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ABSTRACT 

The stability of one-dimensional, steady detonations to periodic 

disturbances transverse to the flow is examined in the limit of small 

wavelength, i.e., 2n/e -» 0. It is found that any unstable disturbance 

grows in time t as exp (xt) with Im(x)/e and Re(ir) of order e . The 

asymptotic criterion for stability is found to depend largely upon the 

2   2 
steady-state profile of c - u (where c is the frozen sound speed and 

u is the mass velocity relative to the von Neumann shock) as a function 

2   2 
of distance behind the shock. Detonations for which c - u decreases 

monotonically are found to be stable (in the e -» °° limit), but stability 

in cases in which this quantity increases either monotonically or up to 

a maximum (and decreases beyond) is determined through simple integral 

functions of the steady-flow variables. More complicated profiles are 

not treated explicitly. In contrast to the labor involved with applica- 

tion of the general theory of detonation stability, the current asymptotic 

result can be readily applied to any detonation, irrespective of the 

number of chemical reactions which occur, provided knowledge of the 

equation of state and reaction kinetics is at hand. 



The criterion is a,pplied to an idealized, one-reaction (A -» B) 

detonation. Unstable regimes are found only if the ratio of specific 

heats y    is less than 2, for which case all detonations are found to be /o 
unstable for sufficiently large values of the activation energy. For lew- 

heats of reaction, it is found that instability, although not reported in 

an earlier numerical application of the general theory to long wavelengths, 

persists for all (positive) heats, unless the activation energy is also 

small. On the other hand, for more realistic heats of reaction, the 

present (asymptotic) criterion predicts stability for small activation 

energies, where long-wavelength,unstable modes were previously found. 
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GLOSSARY OF SYMBOLS 

This glossary contains the principal symbols used in the main text 
of this report, but does not list those occurring only in the appendices. 
Symbols which are not included are components of vectors and matrices; 
these symbols are subscripted versions of the principal symbols, with 
the overhanging arrow (-») for a vector or underscore (-*) for a matrix 
omitted. In the following list, the superscripts and subscripts i and j 
are understood to take on any positive integer (or zero) value, while 
v denotes any signed integer or zero. All other subscripts and super- 
scripts have a specialized meaning. 

Section 
Symbol Description Introduced 

a.(z)        Polynomial coefficients in the solution of the     6 

second-order related equation. 

A(z, CD) '     Polynomial in l/tu with coefficients a^z),        6 

entering the solution of the second-order 

related equation. 

Matrix functions of the steady flow which enters   2 

the 3 differential equation. 

Integrals over the reaction zone involving        2 

steady-flow variables and 6. 

Polynomial coefficients in the solution of the     6 

second-order related equation. 

B(z, tu)      Polynomial in l/to with coefficients b^z),        6 

entering the solution of the second-order 

related equation. 



GLOSSARY OF SYMBOLS 

(Continued) 

B(x) Matrix function of the steady flow which enters    2 

the 3 differential equation. 

c (x)        Frozen sound speed in the steady flow. 3 
o 

c ) Coefficients of admissible asymptotic solutions    h 

c \ in the continuation problem for 0. 

c.(x)        Polynomial coefficient in the solution of the     6 

(n + 2)-order related equation. 

c(x, e)      Polynomial in l/e with coefficients c^x) 6 

entering as factor in p(x, e), the solution 

of the (n + 2)-order related equation. 

C Contour of integration for the definition of      k 

a(e, £, -o). 

C(x, e)      Matrix of n + 2 linearly independent columns      6 

ci(x, e). 

&(x) Derivative of c i\  with respect to x in the steady h v ' o 
flow. 

d ) Coefficients of admissible asymptotic solutions    h 

d I in the continuation problem for 9. 

D(x, 0 Diagonal matrix, similar to *Q(X, 0. 3 

e(x, e)      Correction term in the second-order related       6 

equation; the element Jgl of matrix «j(x, e). 

e. Unit vector, having i  element only. 3 

e. (x, i,  X))        Leading term in the it. series in l/e. 3 

10 



GLOSSARY OF SYMBOLS 

(Continued) 

E Activation energy for the idealized systems.        7 

E(x, £, "o)    A transformed version of <&. (x, x>). 3 

f Degree of overdrive of the steady idealized 7 

detonation. 

?. (x, £, x>)        First correction term in the it. series in l/e.      3 

g.(x)        Exponential coefficient of l/e in the trans-       6 
-»   -» 

formation sequence from 6 to t. 

g (x) /      Functions of the steady flow which enter the        2 

g,(x) ) integrands of h, (T, e) and b?(T, e). 

h Combination of the heat of reaction Q and the       7 

heat capacity ratio y    for the idealized 

system. 

h.(x, £)      Coefficient of e in the exponential of the 3 

asymptotic series for it.. 

h...(x, 0      h.(x, 0 - h.(x,   0. 3 

h ) Vector functions of the steady detonation, 2 

h, \ entering into V(T, e). 

K    ) 

K. 
l 

l 

Regions in the complex z-plane. k 

H(x) Transformed version of £^_(x, x>). 6 

I(x) Generic designation for the integrand for 5 

b (T, e) and b2(T, e). 

I (z)        Integrand of the expression for ß2(£.) for the      7 

idealized system. 

11 



GLOSSARY OF SYMBOLS 

(Continued) 

I. Unit matrix of order i. 6 
«ML 

I I    ... 2 

j(z)        Function of longitudinal distance entering the      6 

solution of the second-order related equation. 

<T(x, e)      Correction term in the (n + U)-order related        6 

equation. 

£ Pre-exponential factor in the Arrhenius rate        7 

constant for the idealized system. 

k. Coefficient of üT in k(&). 6 

k(<$>)        Polynomial in l/& with coefficients k. entering     6 

the solution of the second-order related 

equation. 

The u independent part of k,-,. 6 

The coefficient of u in kQ. 6 

Coefficient of e in the exponential of the 3 
—* 

asymptotic series for jr.. 

Part of k. (x, t,, v>)  which remains finite at the     5 

turning point. 

K Path of integration from x - 0 to °° . 5 

koo 

koi 
k.(x, C, ») 

k*(x, £, v) 

Ko 
Quantities independent of e and u.. 

K(z) Factor of I?(z)  for ß?(£.)  for the idealized system.    7 

12 



GLOSSARY OF SYMBOLS 

(Continued) 

£(x) Function of the steady flow; its value behind the   5 

shock enters L- and Lp. 

Ji.(x) Element 21 of the matrix - L.(x), entering the      6 

second-order related equation. 

L (£) )      Contributions to L(e, t,}X))  in the asymptotic        6 

L2(0 ) limit. 

L(e, £,-6) V(T, e)/e for T = e£ + u. 2 

L The Onsager matrix of order n. 3 

L. L,(x)       Coefficient of e"1 in the power series for the      6 
—* 

coefficient matrix for the t/.\> (j ^ i) 

differential equation. 

L^'fx, 6)   Polynomial T) e"JL.(x)» 6 

L(x, 6)      I,(m)(x5 6). 6 

m An arbitrary integer, greater than 0, but fixed     6 

throughout the discussion in Section 6. 

M Generic symbol for a large positive number..        5 

M.  (t)      Confluent hypergeometric functions. 6 
■kjP 

M(x, e)      Lower (n + 2)-order block of J(x, e). 6 

n The integer number of independent chemical 1 

reactions. 

n(x)        Function of the steady flow entering N (x). 6 

N.(x)       Lower (n + 2)-order block of L.(x). 6 

13 



GLOSSARY OF SYMBOLS 

(Continued) 

p(x)        Pressure in the steady detonation. 5 

p (z)       Leading coefficients in the l/e expansion of the 6 

p (z)           second-order related equation. 

P.(z) Paths in the complex z-plane used to establish k 

the admissibility of Q.   solutions. 
—* 

P(x, T, e)   Coefficient matrix of the fundamental 6 2 
MM 

differential equation. 

q(x, e)      Power series in l/e which enters the second-order 6 

related equation. 

n  (z)       Coefficient of ST2'  in the power series for Q(z, <£). 6 

Transitional value of Q, determined by 7Q. 7 

Reduced heat of reaction for the idealized system. 7 

Reduced activation energy for the idealized system. 7 

Transformed version of q(x, e). 6 

Transformation matrix, which is part of S^x, e). 6 

Chemical rate in the steady detonation. 3 

Coefficient of e"1 in the power series for R^x, e). 6 

Correction term in the (n + k)-order related 6 

equation for cp(x, £, x>,  e) . 

2     2 
Square root function of c T) and £ . 3 

Specific entropy in the steady flow. 2 

Sectors of the complex z-plane. h 

1k 

S(70) 

Q 

Q* 

Q(z, < fc) 

&W 
r(x) 

R  (x) 

R(x, 
4M* 

0 

s(x, 0 
S(x) 

s„ 



GLOSSARY OF SYMBOLS 

(Continued) 

S.(x, e)     Transformation matrix, entering the sequence 6 
ml -»   -♦ 

from 8 to t. 

S^Mx. e)   The product S • S ••• S.. 6 

S(x, e)      S(m)(x, e). 6 

t Time. 2 

T(x)        Temperature in the steady flow. 5 

T(x, t) Transformation matrix which diagonalizes ®Q(
X

>  £)• 5 

u(x)        x component of velocity in the steady detonation, 5 

in the frame of reference of the steady shock. 

u(z, &) 

uv(z, d>) 

•v-X 

r(j)^' 

Solution of the second-order related equation. 

u(x)        Mass velocity in the steady flow with components 

u(x) and 0. 

U;J'(x)      Coefficient of e"1 in the power series for 

U(d)(x, €). 

IPJ'(x, e)   Portion of coefficient matrix of the t/.\ 6 

differential equation not in the block- 

. diagonal form of L^'(x, e) . 

u.(x)      u(m)(x). 6 

U(x, e)     U(m)(x, e). 6 

v(x)        Specific volume in the steady flow. 6 

v (z, &)     Contribution to u (z, Gü) in the second-order       6 

related equation. 

15 



V(T,  e) 

W(T,   e) 

Wv[t,   k(Ä)] 

\,pW 
wv(t) 

GLOSSARY OF SYMBOLS 

(Continued) 

Fundamental function whose roots in the T-plane     1 

determine stability. 

Contribution to the shock distortion from the       2 

initial perturbations. 

A solution of the confluent hypergeometric 6 

differential equation. 

Whittaker functions. 6 

Variant of W. A(t) . 6 

x • Longitudinal coordinate in the frame of reference    2 

of the steady shock. 

x* Value of x at a turning point. 3 

The greater of a pair of turning points. k 

Particular value of x. 3 

Function of the steady flow entering a(e3 u). 6 

Spatial coordinate transverse to the steady flow. 2 

Component 1 of y(x, e) or y.(x, e); solutions of     6 

the second-order related equation. 

Solutions of the (n + k)-order related equation.     6 

Spatial variable derived from x. Except in bi- 

section 6, it denotes the analytic continuation 

of x to the complex plane. In Section 6, it 

represents x - x*. 

x! 

X o 

X-Jp(x :) 

y 

y(x, 0 
y±(x, . «0 

y(x> 0 
y±(x, «0 

16 



GLOSSARY OF SYMBOLS 

(Continued) 

z Variable of integration, replacing x, used in      5 

several contexts. 

5(0        Variable of integration for ß2(^) for the 7 

idealized system. 
—♦ 

a(e, t,,v>) Coefficient of the Up-type contribution to 6        5 

for turning points associated with profiles 

M and I. 

Ct(e, x>) Function having the properties of a(e, £, u), but    6 

for the turning point at the maximum of 

profile M. 

ß(e, £, u)   in a(e, £, u). -5 

ß (£.) Coefficient of -ie'in ß(e, £, u). 5 

ß?(£.) Contribution to ß(e, t,, x>)  independent of e and ID.   5 

ßjt,.) Coefficient of -v>in ß(e, £, t>) . 5 

y Ratio of specific heats for the idealized system.    7 

r(a) Gamma function. 6 

5 Either i or 1, depending on whether the steady      6 

detonation has a ma,ximum or minimum at the 

extremum of c i), o 

A(x, I,  ID) J 

l^z'     I  Factors in the asymptotic expressions for the       5 
A2^Z'    1      integrands of b (T, e) and bp(T, e). 

vs>    ) 
e Wave number of the disturbance (times 2jt) in the     1 

transverse spatial coordinate y. 

IT 



GLOSSARY OF SYMBOLS 

(Continued) 

£ Leading term in the assumed dependence of        2 

T on e; T = e£ + v>. 

T)(x) Sonic parameter in the steady flow. 3 

0(xj T, e)   |  Bounded solution, as x -» °°, of the 2 

0(x, £, "0, e) )       fundamental differential equation. 

9.(x, £, "D, e)  Solution of the fundamental differential 3 

equation, irrespective of the boundedness 

condition. 

9.  (x, t,, v,  e) Series expression for 9., analytically it- 

continued around a turning point to 

sector S . v 

K(X) Mach number in the steady flow. 3 

K Shock Mach number for idealized detonations       7 

marking the transition from profile 

M to profile I behavior. 

\(x) Progress variable in the steady flow for the     7 

idealized system. 

A.(x) Progress variable in the steady flow. 2 

A.(x, e)       Coefficient matrix for the t/. \ differential     6 
'(0 

equation. 

M-  (i>  u)      Coefficient of e~   in the power series 

expansion of the eigenvalues of 

- P'C00* ^e + v,  e) in l/e. 

18 



GLOSSARY OF SYMBOLS 

(Continued) 

li. (x, 0       Eigenvalue of G^x, £). 3 

v Compression ratio v/v for the steady shock.     5 
v + - 

v'1^, x>) Coefficient of e"1 in the power series k 

expansion of the eigenvector of 

- P'C«5, £e + u, e). 
w. 

£(\) Monotone function of the progress variable       7 

for the idealized system. 

(; Value of i(x)   at chemical equilibrium; £(0).     7 
e 

{;# Value of £(\) at the turning point. 7 

£(T, e)        Fourier-Laplace transform of the shock 2 

distortion. 

n(x, £, *>, e)   T(x> 0"1 • e(x, 5, v, -e). .3 
aw- 

«.(x, 5, ", e)  T(x5 ^)-
1 • 9,(x, U  u, e). 3 

n(z) Factor in the solutions of the second-order      6 

related equation, u (z, e). 

p(x, e)        Solution of the (n + 2)-order related equation.   6 

a(v) (-l)\ 6 

a(x) Thermodynamic function in the steady flow.       3 

Z Sector in the complex t-plane. o 
v 

E(Zj <x>)        Combination of coefficients in the second-order   6 

related equation. 

19 



t> 

GLOSSARY OF SYMBOLS 

(Continued) 

Laplace time transform parameter. 1 

Part of T assumed independent of e. 2 

6 •o. Im(u). 
l 

T(z, CD)        Factor in the solutions of the second-order      6 

related equation u (z, CD). 

cp arg(z - x*). 

cp arg(x* - z). ^ 

0(z) P0(z)*. 
6 

cp.(z) Integrals of |i (x, 0 and u2(x5 0, entering     5 

the asymptotic expressions for b (T, e) 

and "bp(f, e) . 

cp(x, t,  t>, e)   Solution of the (n+i+)-order related equation. 6 

$ (x, O       Leading term in e of - P'(x, £e + o, e). 2 

0 fx, t)       Part of - P'(x, £e + u, e) independent of €. 2 

\|r(t, e)        Fourier transform of ?(y, t). 2 

\tf(y? t)        Distortion of the shock. 
2 

^r(Zj &)        Stretched coordinate in the second-order 6 

related equation. 

ij?/.\(x, e)      Transform of 0(x, £, r>, e) by S^(x, e).        6 

?(X, 6) %)(X' ^' 6 

?. (x, e)        Independent solutions of the ty  differential       6 

equation. 

20 



CD 

GLOSSARY OF SYMBOLS 

(Continued) 

Parameter for the idealized system determined    7 

by detonation velocity and 7 . 

tu Large parameter, Se. 6 

tt Parameter for the idealized system determined     7 

. by detonation velocity and 7 <> 

N ) Interval of the real x axis on which T(x, £)      3 

K. \ is differentiable. 
1 > 

Subscripts 

+ Evaluation in the steady flow, behind the shock.  5 

Evaluation in the steady flow, in front of the    5 

shock. 

max Evaluation at the point in the steady flow where k 
2  .    . c Ti is maxxmum. 
o 

CJ Evaluation for the Chapman-Jouguet detonation     7 

velocity. 

21 



1.  IOTRODUCTION 

The phenomenon of detonation has been the subject of continuing 

theoretical analysis ever since the pioneering work in the nineteenth 

century. As a result -of a certain amount of agreement between theory 

and experiment, this effort resulted in the general acceptance of the 

so-called von Neumann-Zeldovich-Doering theory. The fundamental notion 

in this theory is that the phenomenon consists of a shock propagating 

into the quiescent material, with a resultant initiation of exothermic 

chemical reaction behind this front. A quantitative description of the 

structure of the detonation wave is presumably complicated in its early 

stages, but the theory directs its attention to the situation after all 

transients arising from the initiation of the detonation have vanished. 

It is supposed, then, that the detonation ultimately becomes a steady, 

one-dimensional flow when viewed in the frame of reference of the shock. 

The investigation of the consequences of these assumptions, with 

particular attention to the Chapman-Jouguet hypothesis for the determina- 

tion of the velocity of the shock front, has been a principal concern of 

theoretical endeavors in this field. 

Beginning approximately in 1959 the experimental evidence was in- 

creasingly seen to be not entirely compatible with the above picture. In 

23 



particular, numerous instances of three-dimensional structure of an 

1 2 
apparently non-transient nature ha,ve been reported. ' 

From a theoretical point of view, the possibility, that the 

supposed one-dimensional, steady detonations do not actually occur, is 

3 
subject to analytic investigation. The author has attempted to deter- 

mine the so-called hydrodynamic stability of steady detonations; that is, 

whether or not small disturbances imposed upon the steady flow at some 

instant will die out with time. Should any infinitesimal disturbance 

grow, the detonation is said to be hydrodynamically unstable. 

The key to the hydrodynamic-stability theory is that the equations 

of reactive hydrodynamics are linearized in the deviations of the per- 

turbed flow from the steady flow.  By virtue of this, the dependence of 

the perturbations on the coordinates transverse to the steady flow is 

removed by Fourier decomposition and one is left with the stability 

problem for a given transverse wave number e/2-m. 

Now the general theory of detonation stability can be carried 

to the definition of a criterion based upon the roots in the complex 

T-plane of a certain function V of T, e, and the steady flow. The 

determination of V(T, e) for a given steady flow is by no means simple, 

requiring the solution of a system of ordinary differential equations of 

order n + k  (for detonations involving n independent chemical reactions) 

whose coefficients depend upon the steady-detonation structure in the 

reaction zone as well as T and e. Ordinarily, then, the stability 

problem is expected to require numerical solution with results, therefore, 

2k 



k 
limited to a finite range of wave numbers. A recent calculation for an 

ideal-gas, unimolecular-reaction system was able to establish instability 

of certain detonations over finite ranges of e. However, any assertion 

of the stability of a given detonation was necessarily qualified to 

include only those values of e  which were numerically accessible to the 

calculation. Thus, we are led to investigate the stability criterion in 

the limit of small wavelength, i.e., large e. 

Since the present theory neglects the transport effects of 

diffusion, viscosity, and heat conduction, the unit of length in the 

problem is determined by the gradients in the steady flow. Hence, the 

analysis of the e -♦ °° limit is expected to apply to wavelengths which 

t 
are short relative to the reaction-zone length.  On the other hand, 

transport effects are expected to become important, at least for 

finite disturbance magnitudes, for wavelengths comparable to a mean 

free path. Although the validity of our theory ca,nnot be ascertained 

without recourse to the transport equations, it is not unreasonable to 

suppose the restriction of our present considerations to wavelengths 

which are long relative to a mean free path and short relative to the 

reaction-zone length to be physically meaningful. 

The mathematical considerations which are attendant upon the 

investigation of the e -» «*> limit are those of the so-called parameter 

The reaction zone is formally of infinite extent. The phrase "reaction- 
zone length" refers, of course, to any convenient measure of the region 
over which state variables change substantially, e.g., the distance to 
half-completion of some reaction. 

25 



problem for linear differential equations. This branch of analysis is 

essentially complete for systems of differential equations of any order, 

provided there are no so-called turning points, but is limited to certain 

second-order equations and specific high-order equations when a turning 

point is involved. For laxge systems of equations there does not seem 

to be any appreciable analysis in the literature for the turning-point 

problem. 

Turning points of rather simple types play a central role in the 

analysis of the small-wavelength limit, so that we require that the small, 

but troublesome, gap associated with the (n + h)-order system of equations 

first be bridged. A la,rge portion of this report is involved with pre- 

cisely this problem. 

After establishing asymptotic expressions for the desired function 

\ h 
V(T, e), the stability of the idealized system previously investigated 

is examined in the small-wavelength limit. 

2. RESUME' OF THE GENERAL THEORY 

The time evolution of an initial perturbation from a steady 

detonation, moving along the x axis, is reflected by the secular behavior 

of the distortion $(y, t) of the leading shock. If x is the coordinate 

in the direction of the steady-state flow and the origin (x = 0) is 

located in the (distorted) shock, while y is the coordinate transverse 

to the steady wave, then - ?(y, t) is the x coordinate of the 

J ;  
For brevity, we use only one transverse coordinate. The stability 
criterion is identical to that for three dimensions.^ 
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3 
unperturbed shock at time t. The general theory of detonation stability 

has shown that for infinitesimal disturbances the Fourier transform 

of if on the transverse coordinate has its Laplace time transform 

O-00 

1r(t, e) = f e"iey ?(y, t) dy (2.l) 
•'-00 

given by 

|(T, e) =f    e-Ti>(t, e)  dt 

= W(T, e)A(T, e). (2-2) 

The function W(T, e) is determined by the e-Fourier component of the 

initial perturbations in the state variables [say, specific volume v, 

mass velocity Ü (a 2-vector), specific entropy S, and chemical composi- 

tion X  (an n-vector)] throughout all of space, and has been shown to' 

contain no singularities in the right half T-plane. 

The function V depends upon the steady flow but not on the 

initial perturbations. It is given explicity by 

V(T, e) = fb^T, e) + ieb2(T, e) - 9(0, T, e) • (t\ + ±€\) > 

9(x, T, e) • A^-(x)   ' gt(x)clx     (2.3) 

0 

CO 

b2(T, e) =f     9(x, T, e)   • A^x) ' g(x)dx. 
•'o 

The vector function 9(x, T, e) is the solution of the differential equation 
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*£= - P'(x, T, e) • e 

P(x, T, e) = - A-^TI + ieA (x) + B(x)] (2.*0 

which is bounded in the reaction zone for Re(-r) > 0; i.e., 

9(x, T, e) = 0(1) as x - » for Re(x) > 0. (2.5) 

The prime denotes the transpose matrix. The vectors 9, g^,  g , ht, and 

h are (n + ^-vectors, one component for each state variable, while 
y 
A (x), A (x), B(x), and I are (n + 4)-order square matrices; £ is the 

unit matrix and the remainder of these quantities (given in Ref. 3) are 
—> —+ 

completely determined by the steady detonation, with ht and hy being 

determined solely by the von Neumann shock itself, i.e., by the equation 

of state of the unreacted explosive and the steady detonation velocity. 

The occurrence of instability, in the sense of exponentially 

growing contributions to t(t, e), is seen to be occasioned by roots of 

V(T, e) lying in the right half T-plane. The problem of detonation 

stability resolves into determining whether or not V has such roots. 

The only general result in this regard is the fact that for |T | large 

(at fixed values of the detonation velocity and e) with Re(-r) £ 0, V is 

p 
of order |T |  and has no roots at infinity. 

Now in obtaining V(T, G) asymptotically in e, it is of importance 

that the magnitude of T be permitted to depend on e, the dependence 

being such as to reproduce the asymptotic dependence of the roots of V on 

G. For this purpose, we let 
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T = et, + x> 

whence Eq. (2.3) and (2,k)  become 

(2.6) 

V(T, e) = eL(e, £, u) 

L(e, i, \>)  = ^x + i^2 " 3(°> ■£» ", 6) * .C^ht + ihy]        (2.7a) 

+ e"^ [b1 - 6(0, £, u, e) • 5^] 

j*»[^(x, 0+&t'x, *).] • 

*„ = [A-1 • (£l + iA )]' (2.7b) 
•"•0   *~x     *»   «'V »0   "*x    **   «*y 

4, 

I = 0(1) as x -» », for Re(x) > 0 . (2.7c) 

The significance of the substitution, Eq. (2.6), is that the 

leading term of 9 (as e ->  ») depends, as we shall see, upon both J^  and 

«n, and any unstable roots of the leading term of V(T, e) occur on the 

axis Re(0 = 0. Thus, the sign of the real part of x> will determine 

whether such roots are stable. 

3. FORMAL SOLUTIONS 

In this section, we obtain, following the theory of the parameter 

problem, the leading terms in the e-asymptotic solutions of Eq. (2.7b). 

The validity of these expressions in the asymptotic representation of . 

"3 will be the concern of Section k. 
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Series solutions of Eq. (2.7b) are obtained from diagonalization 

of the leading matrix 4> . If there exists a similarity transform 

T(x, £), differentiable on an x interval N, such that 

T 
-1 

5o * I = £(x' ® = Diag^i' ^2> •••' V^ (5,1) 
M) 

(the second equality denoting that JD is diagonal and defining its 

elements), then the transformation of 6 by T- yields the system of 

equations, 

-*   -1  -2 
it = T • e 

$L = (eD + E) • * (5.2) 
dx    «~  «~- 

E(x, 5, u) = T(x, 0"1 ' C*n(x» u) * T(x> 0 - dT<x' ^)/dx^ 

5 t Following the scheme given by Friedrichs/ we substitute 

rt. = [e.(x, £, u) + e-1f (x, £, u) + ...] exp [eh^x, £) + k._(x, £, o)] 

(3.3) 

in which subscript i distinguishes among the solutions which will arise. 

The unknowns h. , e., k. , f. ... are found by equating powers of e in 
x  l  1  i 

Eq. (3.2); one obtains 

The factor exp (k.) is not separated from e. and f. by Friedrichs, but 
this is not a consequential difference. 
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h,(x, 0 = /%.(x', 0 ax' (3.U) 

but the determination of the remaining quantities depends largely upon 

whether or not the eigenvalues, p.., are distinct. The solution it. is 
i x 

said to be of the |i. type. 

The eigenvalue-eigenvector problem for $0 can be solved explicitly 

and, in fact, is similar to that which occurs in the problem of shock 

6 stability.  In Appendix A, we compute $ and find its eigenvalues to be 

H = - K(K{; + S)/T)U 

u = - K(K£ - S)/TJU. 

(3.5) 

\i3 = \xk=  ... = Vn+k=  £/u 

s 
,2   2 ^ = cr + o]2. o 

The notation of Eq. (3.5) is as follows: T](X) is the sonic parameter 

T) = 1 - u /co 

in which c (x) is the frozen sound speed and u(x) is the mass velocity in 

the steady frame of reference; K(X) is the local Mach number u/c . The 

square root s(x, t,)  is to be understood as a function of £ with parametric 

dependence of x, whence it suffices to specify that s is the positive 

branch of the function with a branch cut along the imaginary t,  axis between 

± ic n2. The matrix of right eigenvectors T and its inverse are also o *»» 

given in Appendix A, along with certain elements of E which will be 

required. 

31 



Wow in the subsonic reaction zone, we see from Eq. (3.5) that only 

li has, for Re(£) > 0, negative real part. It is not surprising that 

—■* 

it will be of primary importance in finding 9 since the latter must 

satisfy the boundary condition Eq. (2.7c). The determination of the 

unknowns in it is straightforward; 

dk. 1(x, i,  u)/dx = Eu(x, C, v) (3.6) 

/x 
E11(x

/, £, u)dx' 

th 
where e denotes the unit vector having only its j  component non-zero. 

d 
The lower limit of integration x need only be selected on the N interval 

in order to ensure existence of the integral. The next-order term is 

found to be 

j=2  o 

f^x, £,") = - E2 A2 " ^1> 

E31/(^3 - ^ 

(3.7) 

where x is not necessaxily the same as in Eq. (3.6) but does lie on 
o 

N. Higher terms are readily written down for this series. 
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Now it will be convenient to denote the solutions of Eq. (2.7b), 

irrespective of the boundary condition Eq. (2.7c), by subscripted 

—* —♦ 

symbols 9. as determined by the inverse transform from rt.. As we noted, 

then 6 is bounded in x for Re(f;) > 0. For Re(0 = 0, u has negative 

real part for x large only if |lm((;) | < (c f]2)  _ . For pure imaginary t, 
O   X—oo 

of greater magnitude, it is seen that 9 is bounded if E  has a non- 

vanishing, negative, real part. From Appendix A, Eq. (A.l6), we find, 

-♦ .  7 using linearization of the reaction rate r near equilibrium, 

11v ' b*    '        )    2UST]   I     o   -e     | 
(3.8) 

where L is the symmetric, positive-definite, Onsager matrix (order n) 

-. 7 
and a is a thermodynamic function, related to the heat of reaction. 

2. 
It follows that, for Re(0 = 0, |{; | > (c n2)x=:00j and Re(o) ä 0, we have 

Re[Ei;L(», t,  t>)] < 0. (3.9) 

Therefore, 3 is bounded as x -» °° for all Re(x) ^ 0 [except, of course, 

for t  = ± i(c n2)  , for which the interval of definition N must be 

bounded away from x = «>], 

Although 9 has the desired boundedness property, it will be seen 

that 9p is also required explicitly. The evaluation of the latter is 

evident from our expressions for 9 . Thus 
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rt2 =  [e    +  e~1f2 +   ...]  exp  [eh^x,  £) + ^(x,   C, u) ] 

h2 - /** n2(x',  Odx' (5-10) 

kg = /      E22(x',   5,  u)dx\ 

The other solutions 9 , 9^, ..., 9n+1+, all of the u^ type, need not 

concern us other than the fact that their series exist; the prescription 

given by Friedrichs applies to this degenerate case as well, although 

explicit determination of it,, ... in terms of elementary functions is 

not generally possible. 

The region of definition of the 9. depends upon the existence and 

differentiability of the transform T_(x, £)• As is seen from Appendix A, 

the intervals N can be terminated only at a point x* at which s(x*, £) 

vanishes or where u(x*) = £. It is convenient then to classify the 

values of £ according to the properties of the matrix £: 
i ' ! 

Class III: Re(£) = 0 and min (c^2) £ Kl s max (c^2), 
x x 

Class II: lm(0 = 0 and min (u) £ t, £ max (u),  _ (3.1l) 
x x 

Class I:  All other £, with Re(0 >  0. 

For £ in Class I, a single interval N extends from x = 0 to ». In Class 

III and Class II, the x axis is broken up into two or more open intervals, 

and we denote these N , Kg, ..., beginning at the right. It is of interest 

to note that in Class II, the solutions 9p and 9 become "identical" at 
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x* in the sense tha,t the eigenvectors of J> (see Appendix A) correspond- 

ing to l-ip and |J. become identical, as, of course, do the eigenvalues 

themselves.  Similarly in Class III, 6 and B~  become identical at x*. 

k.    ASYMPTOTIC EVALUATION OF 6 

The desired solution 9 is defined by the boundedness condition, 

Eq. (2.7c). For large x, the behavior of the solutions of the differ- 

ential equation (2.7b) was shown previously to be exponential growth 

or decay, the coefficients of x in the exponentials being just the 

eigenvalues of the coefficient matrix, evaluated at x = °°. Moreover, 

for Re(f) positive, it was shown that a single eigenvalue has negative 

real part. 

The formal solutions Eq. (3.3), derived in the last section, 

behave in the same fashion for large x, for the h. and k. integrals 

become linear in x near the region of chemical equilibrium. Wow for 
Q 

large e, the eigenvalue problem at x = » has a perturbation solution 

through a power series in s" , 

[e $0(», 0  + j^-, v) - (en(°) + nW + e"V2) + ...)l] 

which exists provided that j> (°°, t)  has distinct eigenvectors. Then, 

with the exception of the case of degenerate eigenvectors of JQ(°°> 0 

[viz., t = ±  i(c Ti2)   and t = (u)   which we do not treat directly], 
73       ^ O   X=co X=OD 
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it is seen tha,t the x -> °= solutions agree with the expressions of the 

last section when carried to large x. The e - =° limit and the x - co 

limit are, therefore, interchangeable; and the solution 9 can be investi- 

gated directly through the x - =° behavior of the e-asymptotic solutions. 

The validity of the expressions, Eq. (3.3), as asymptotic solutions 

of the differential equations (2.7b) depends, according to the theory 

of the parameter problem, only on the behavior of the functions h^x, £). 

It will be convenient in what follows to regard the formal solutions as 

defined not only on the axis of real values of x but also for complex 

values z. For e real, then, the region of validity (the admissible region) 

th 
X. of the z-plane for the i  solution depends upon the existence of paths 

P (z) in K   for every z such that P. is of bounded contour length and 

such that h. - h. is, in real part, non-increasing along the path, i.e., 

Re[h..(z') - h..(z)] ^ 0 

h.. = h. - h. (^.l) 

for all z' on P., from an origin z[  to the point in question z. The 

existence of such paths for every j is sufficient to prove the 

admissibility of solution i inK. 

In order to consider condition (U.l) in connection with 8 , we 

write 

Vz> = \±M  = •- = hn+U,l
(z) =/Z ^31(z')dz/ (I,'2) 

ID  i  ; 
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We consider h  and h  along the real axis for the present, restricting 

attention to an interval N for which 9 , 62, ... are defined. As long as 

Re(n21) and Re(u ) do not change sign, Re(h21) and Re(h51) are monotone 

in x. If Re(h ) is monotone non-increasing, then a suitable path P^ 

originates at the left and extends to increasing values of x. If Re(hi;L) 

is monotone non-decreasing, then a suitable path P originates at a 

large value of x. and extends to the left. In either case, an admissible 

region 3C can be found, which includes that portion of the real axis on 

which neither Re(u„ ) nor Re(|i,..) vanishes. In view of the interchange- 

ability of the e and x limits, it is clear that such a region can be 

extended to infinite x. 

From Eq. (5.5)? we compute 

|i2    = 2/CS/T]U 

H51 =  U + KS)/TIU. (U.3) 

Now for any £, it is seen that Re(u2 ) and Re(n51) do not change sign in 

any interval of definition K of 9., Ig, ..., for the points where s 

vanishes are just the endpoints of the intervals for Class III values of 

Similarly, the validity of §2 is proved by consideration of 

^12 = " 2/csAu 

u32 = (^  - KS)/T]U (h.k) 

whose real parts either vanish identically or do not vanish at all 

(depending on £) on the N intervals. 
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For £ in Class I, it follows that the admissible region JC 

includes the entire x axis so that 

6 ~ 3   for all x. (lf.5) 

For Class II and Class III, however, we have 

0 ~ 0    for x on N (k.6) 

but are left with the problem of the continuation of 0 to the left of the 

so-called turning points x*. 

There are essentially two techniques used in solving turning-point 

problems and it seems appropriate to pause to mention some general 

characteristics of these. The first involves an attempt to proceed 

around the turning point by analytic continuation into the complex z 

(independent variable) plane. Ordinarily this process is terminated at 

certain Stokes lines across which the asymptotic form of the solutions 

to the differential equations changes abruptly. Usually this approach 

involves solution of the "connection problem;" that is, it involves 

the determination of the solutions at the turning point itself by 

means of an appropriate "stretching transformation."  This first 

approach, although extensively investigated, seemingly has not been 

developed to any degree of generality, with proofs of its validity 

being not entirely satisfactory. 

9-12 
A second approach is that of Langer and McKelvey^   which 

concentrates at the outset on the nature of the equations at the turning 

point, in much the manner of the solution of the connection problem, but 
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in such a way as to develop a series which is valid both at the turning 

point and away from it. The process of "piecing together" solutions is 

thereby avoided and the proof of asymptotic validity becomes relatively 

direct. 
I 

Now it will not be surprising to find that the nature of the 

present problem at the turning point depends upon whether £ is in Class 

2 
II or Class III and in the latter case on the behavior of en at x*. 

Thus several types of problems involve us here and it will be convenient 

to employ both approaches to the turning-point problem. Most of the 

problems encountered here can, in fact, be solved by the first approach, 

without the necessity of attacking the connection problem at all, while 

the Langer method seems more direct for the purpose of completing the 

analysis. The remainder of this section is concerned solely with the 

first approach and requires no additional analysis beyond the application 

of the condition, Eq. (U.l). 

Class II Values of t, 

For the sake of simplicity, let us suppose that a single point at 

which u = t,  exists; it Will be evident that the procedure described here 

applies equally well irrespective of the number of such points. Accord- 

ing to Sec. 3, there exist solutions 9 , Qg, ... defined on N (x* < x) 

and a second set, 8 , ÜL, ... defined on fc*2(0 ^ x < x*). Rather than 

deal with these, however,' it is simpler to redefine the 8. to be the set 

of functions obtained from the set valid on N.. by analytic continuation 
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throughout a region 3C of the complex z-plane. Now the matrix T(z, £), 

the analytic continuation of T(x, ^) to complex z, is differentiable in 

some strip centered on the x axis, punctured in the neighborhood of x*, 

as shown in Fig. 1, and in fact is single-valued there. Since 9.., 

—» 
6p, ... involve only functions which are regular throughout K, a,nd 

integrals thereof, it follows that as long as 3C is simply connected, as 

—»  —» 
in Fig. 1, 9,, 0p, ... are regular and single-valued. 

Im(z) 
Im(hj|)=CONSTANT 

y//////////////////////////////k////////////////////////// 

SHOCK 

.   * CUT c 

Reth^CONSTANT 

Fig. 1 The region K of the complex plane through which the series 
—» 

solutions 9. can be defined by analytic continuation for Cla,ss II values 

of £. The turning point x* and its neighborhood are excluded. By virtue 

of the cut C, K is simply connected. The light curves are lines of con- 

stant Re(h.-,) and the paths P. of the type illustrated (heavy curve) have 

non-increasing Re(h ...). 
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We can now investigate condition (k.l)  using Eq. (4.3). Since u_ 

and u  are real and positive on the real axis, h_ and £L.. are 

monotonically increasing with x. In region K, then, the lines of 

constant Re(h.1) are perpendicular to the x axis, as shown in Fig. 1. 

Therefore paths P., originating on the right, can reach all points of 5C, 
J 

except the shaded area, simply by proceeding along the x axis and 

alternately along lines of constant Re(h ... ) and Im(h..,) with decreasing 

Re(h.-.), as shown in the figure. Since this argument applies for both 

j = 2 and 3, it follows that 8.. is admissible throughout K,  except in 

the neighborhood of the cut. Thus we conclude 

0 ~ e     for all x j/ x*. (4.7) 

Class III Values of £ 

2 
Turning points where c- r\  increases 

In this case, we begin by considering the case of a turning point 

2 
through which c r\  increases, although the case in which it decreases is 

related by a simple sign transformation of the independent variable. 

2 
These cases in which c TI is not an extremum at x* can be reduced to an ° 
application of a minor generalization of the "singular turning-point 

13 problem"   for second-order differential equations, the generalization 

being required by the increased number of equations, i.e., n + k 

(rather than 2) equations. 

As for Class II values of £, we begin by generalizing the intervals 

of definition of the series solutions to the complex z-plane. Now, 
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however, the point x* is a branch point of the z-plane analytic continua- 

tion of the square root s(x, £), whence x* is also a branch point 

—♦    —» 

of |i and |i . Analytic continuation of 0_ and 8? will yield results 

which depend upon the path of continuation and some care must be exercised 

with regard to notation. 

Begin, then, with the functions 0 , 0 , 0 , ... , defined in Sec. 3, 

on the interval IS; and compute Up, (z) and M-,,(z) in the neighborhood of x#, 

A A 
u21(z) =  [2Kd2/T]u]x^(z - x*)2[l + 0(z - x*)] 

^31(z)  =  [i/T]2/<]^[l + 0(z - x*)] (4.8) 

where 
o 

a = a(c0T))/dx, 

and where we have ta.ken £ to lie on the upper imaginary axis. We need 

not consider the conjugate points at all, since roots of V(T, e) occur 

in conjugate pairs, as is proved in Appendix B. It follows from Eq.. (4.8) 

that for z m x*, 

h_.(z) - h* = [l+Kd2/3Tiul Jz  - x*)3/2 + ... 21v '       "21  ^ ~ /^'^Jx* 

. h3i(z) " h!i= [i/T1""]x*(z -x*) + ••• (U*9) 

h*. = h..(x*) . 
ID   10  . 

The loci, 

Re[h21(z) - h| ]  = 0 

Re[h31(z) - hjx]  = 0 (4.10) 
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are referred to as transition lines, whose significance will be evident 

in what follows. Near x*, we see that these are radial lines emanating 

from x*, viz., 

cp = arg(z - x*) 

cp2l = ± it/3, ± it, ± 5*/3,   ... (^.H) 

<P51 = 0, ± A 

where the subscripts classify these values of cp in accordance with the 

h? or the tu condition. Note that the. line cp  = ± it and the 

cp  = ± it, ± 3it, ... lines are exact transition lines, while the others 

hold only in the limit z -» x*. 

Now the solution 9 , which is defined and whose validity has been 

established for xon^, presumably will retain its validity in the 

z-plane near N . To examine to what extent this is true, we refer to 

Fig. 2 which shows the transition lines for cp21 and the sign of 

Re(hp - h* ) for the neighborhood of x* and -it<cp<it. It is 

observed that Re(h2 ) diminishes on paths originating at the right and 

these paths can be extended outside the sector - it/3 < cp < it/3> to 

include the entire plane with the exception of the axis, cp = ± it, by 

employing paths of constant Re(h ) as shown in the figure. The axis 

—> 
is excluded by virtue of the fact that 9 is singular at. s = 0 and hence 

no path can be extended through the turning point. 

To proceed with the description of the asymptotic solutions of the 

differential equations, we now introduce some additional notation. We 
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Re(M= CONSTANT 

Re(h2|-h*)>0 

Re(h2|) CONSTANT 

^=-?r/3 

Fig. 2 Paths P~ in the complex z-plane on which Re(h?1) diminishes and 

P, on which Re(h,..) diminishes for asymptotic solution 0 , defined by- 

analytic continuation from the real axis x > x* to points with |cp | < TC, 

[cp = arg(z - x*)]. Points z and z on opposite sides of the slit at 

cp = ± jt both lie on such paths, although Pp(zp) is no't shown. 
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define "sectors" S. in the (z - x*)-plane by means of the transition 

lines; near x* these approach the sectors 

SQ : - it/3 < cp < A/3 

S, : rt/3 < cp < rt 
1      . (k.12) 

S1:-it<cp
<-rt/3 

S2 : ä < cp- < 5*/3 

If we denote the analytic continuation of solution 9. to sector S by 

Q\', then our discussion in the last paragraph proves that 9£ , 9^ , 

9^~ '  form a solution, which we denote simply 9^  , i.e., by its central 

sector, asymptotically admissible, with respect to condition (k.l)  for 

hp , in the plane slit at cp = ± jt. We refer to the latter as the Stokes 

lines for ^  , since the continuation of ^  'across them has not been 

shown to be valid (and, in fact, is not valid). 

Similar considerations can be applied to the solution 9g for we 

have near x*, 

2, */o 
h^z) - h*2 = - [^Kd^Tiul^z - x*y/   + ... 

h32(z) - hj2 = [i/r^/c^z - x*) + ... (U.13) 

yielding precisely the same set of transition lines as for 9^ In Fig. 3 

are shown the transition lines for hl2 on - rt/3 < 9 < 5«/3 and the sign 

of Re(h 0 - h* ) is shown in the sectors S_, S , and S2« Paths of 
12   12 u  x      <- 
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Im(z) 

Re(hIO-h*)>0 

<£=TT/3 

Re(h|2-h* )<0 

T02) 
9        STOKES LINE 

Re(hl2-h,2)<0 

S 

7(11) 
8      STOKES LINE 

■*(\) 

6 STOKES LINE 

<£=-ir/3 

Fig. 3 Paths P in the complex z-plane on which Re(h_0) diminishes and 
-*(l) P on which Re(h ?) diminishes for asymptotic solution 9^ 'defined by 

analytic continuation of 92 from the real axis x > x* to points with 

- rt/3 < cp < 5rt/3.  Points z and z on opposite sides of the slit both 

lie on P1 paths (that for z^  is not shown) but two types of P paths are 

required. The da,shed P paths cannot enter sector Sp, while the solid 

P., paths cannot enter the cp ^ 0 region. 
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decreasing Re(h 2) then originate in sector S and cover the plane slit 

-*("])    -*(2)    ->(0) ->(l) 
at cp = - rt/5, 5rt/3. The solutions Q^XJ, 9£ ;, 9£ ', denoted simply 9V , 

are, therefore, admissible with respect to condition (k.l)  for h^, and 

have Stokes lines at cp = - .rt/3> 5«/3. 

These considerations can be applied to the continuation of the 6^ 

and 6p series into other sectors to establish a collection of solutions 

which are admissible on certain slit-planes, as seen in Table I, where 

again condition (l+.l)'has been applied only between h and hg. Although 

this list could be extended indefinitely, it is readily seen that, at 

each point z, only two distinct solutions exist. Thus 9£  and 9£ 

differ by a, constant factor, so that Table I contains but three distinct 

-+(())    ->(l) -*(  l) -*(2) ~>(-2) 
solutions, say 9^ ', 9V ' t  and QK    ', although solutions 9V ' and 9^ 

will also prove useful. 

TABLE I 

System of asymptotic solutions of differential Eq.  (2.7b),  admissible 

with respect to condition (U.l) for (i,  j) = 1, 2, near a turning point 

2     .     . . x* at which c n is increasing. 

Stokes lines a,rg(z - x*) 

±    ir 

- A/3»     5^/3 

- 5rt/3s       A/3 

*/3,     7*/3 

- 7it/3,   - rt/3 

h7 

Solution Definition 

e(o) ^(0)         ?(1)         ^(-1) 
,      1    '         1    »         1 

a«1) -(1)         -(2)         -(0) 
2     '         2     '         2 

3(-D o<-i>,   ep),   #» 
«5<2> ?<2),  #>.  -w 
at-2) e<-2>,   ^>,   e[-V 



It is of interest to note that in the central sector of the plane 

slit by the Stokes lines, the solution is recessive but is dominant 

in its outer sectors. For example in Sn, H^ '  is recessive, since 

h„ - h* has positive real part and Gi- 'grows in magnitude relative to 

-(0) -*(l) 
9V 'as . e increases. In S.., however, 9A1 'is recessive. In fact, it is 

just this property of the central sector which is used in establishing 

the condition (U.l). 

Turning now to the validity of this condition for j = 3, we 

employ the second of Eq. (^.9) and (U.13) from which it is seen that 

P, paths must proceed in the upward direction in the z-plane„ For 9^ '., 

it is seen from Fig. 2 that such paths exist for all points in the region 

previously found to be admissible with respect to the hp. condition. 

Similarly for 6r ' which has Stokes lines at cp = 7t/3, - 5«/5,  the slit- 

plane is entirely covered by P paths. For Er ', however, the Stokes 

lines extend downward, as in Fig. 3> so that for points with Im(z) £ 0, 

the P, paths must originate on the same side of the Stokes line. Thus 

the h, condition splits this solution into two portions; 

IT
11

) valid in  0 < cp < 5rt/3 

fp12' valid in  - rt/5 < 9 < it. ♦ (^.1^) 

Since QK     '  differs from 9V '  by a factor, a similar splitting is imposed 

on it. 
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2 
Turning points where c r\  decreases 

2 
For turning points at which c T) decreases, the solutions and their 

Stokes lines are somewhat altered. It is straightforward to apply the 

above methods to*obtain the corresponding solutions. We begin with 

9 , 9 , ... , not on N , but to the left of x* and proceed by analytic 

continuation as before. Thus, the first of Eq. (k.$)  becomes 

h^z) - h^ = C^(-d)^/5THi]xJe(x* - z)
5/2 + ... (4.15) 

Defining sectors SQ, S1,   ... by the transition lines which near x* are 

given by 

cp = arg(x* - z) 

$21 = ± n/5, ± rt,   ... 

931 = 0, ± rt 

as indicated in Fig. k,  we can readily obtain the system of solutions in 

Table II. The regions of validity refer, as in Table I, only to the 

condition (U.l) applied between 9 and Gg, Note that 0g is now recessive 

in S„. 

Imposing the condition (k,l)  for j = 5 leads again to P paths 

-*(-l) -(2) 
directed upward in the z-plane, whence 8V   and 9V  are seen, from 

Fig. k,  to be split into two parts, for example: 

e^""11) valid in  - 5«/5 < 9 < 0 

l^"12^    valid in      - it < $ < it/3. (4.16) 
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Im(z) 

Re(h2|-h2|)<0 

Re(h2fh2|)>0 

*.± + IT 

<£ = TT/3 

Re(h2|-h2,)>0 

Fig, k   Definition of sectors S0, S , and S 1 for a turning point x* 

through which c r\  decreases. The sign of Re[hp - h? (x*)] obtained 
—> —* 

from the analytic continuation of 8 and 8 from the real axis x < x* 

is indicated. P paths on which condition (U.l) is valid proceed 

upward in the z-plane, as indicated. 
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TABLE II 

System of asymptotic solutions of differential Eq. (2.2), admissible 

with respect to condition (U.l) for (i, j) = 1, 2, near a turning point 

2 
x* at which c T] is decreasing. 

Stokes lines arg(x* - z) 

± it 

- rt/5,  5*/3 

- 5rt/3,   A/5' 

*/3,  7*/3 

- 7ä/3, -;ä/5 

Solution Definition 

3(0 •f»,   I«1),   it-1' 
e^ ^n 42), 40) 

**> ?(-i), e<-2), 4°> 
?C2> f>,  se», I1) 
3(-2) et"2', et"«, et-1' 

Continuation problem 

The continuation of the asymptotic expression for 8 beyond a 

turning point divides into two problems, then, depending upon whether 

2 
c r\  is increasing or decreasing at x*J and a complete determination of 

—» 
9 for all x will depend upon the configuration of turning points along the 

—» 
x axis. It is convenient to carry out the determination of 9 under the 

2 
assumption that c T) has some simple form, although more complicated forms 

can be treated with little additional difficulty. Three profiles will be 

considered, as shown in Fig. 5; each occurs for certain values of the 
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parameters for the idealized, one-reaction detonations whose stability 

1+ 
has been studied numerically.  Profile I designates those steady detona- 

2 2 
tions in which c r\  increases monotonicallyj profile D, those in which c TJ 

2 
decreases monotonicallyj and profile M designates those in which c r\  has 

a single maximum as a function of x. 

Fig. 5 Profiles of c T) in the steady flow which are considered. Profile 
° 2 

M includes both cases with regard to the relative values of c i) at x = 0 

and x = <» . 
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Profile I. For detonations ha,ving profile I behavior, we first note 

that (for £  in Class III) to the right of x*, i.e., on interval fc^, we 

have 9 ~3 , Eq. (4.6), and c2i\  increases at x*. The asymptotic expres- 

sions of Table I,, as modified by Eq. (U.1^), are directly applicable. 

Thus 6 is contained in (T >which brea,ks down at cp = ± tt. To solve the 

continuation problem, we write 8 as a linear combination of two independ- 

ent solutions, valid on cp = * [see Table I and Eq. (4.l4)] 

and on cp = - rt 

e(-x) + d^"
2l). (^.18) - c2^    . ^2 

Contributions from the remaining n + 2 solutions need not be included, 

for reasons which will be given later. Now in S.^, 9^  and Eq. (4,17) 

are valid. Since Ir11' and 3^ are identical, viz. 9^, in S1 and 

G^11^ is recessive there, it follows that d = 1. Similar considerations 

in S .. prove that cL, = 1. 

The remaining coefficients are determined by the condition that 9 

is single-valued. Equating Eq. (4.17) and (4.18) for x < x* and 

utilizing the fact that "e^-1^ and 3' '  differ by a constant factor, as do 

Q^11^  and e^"21), we see that 

e ~ e^1* + 3<
2) = ^ + 3<

n). (4.i9) 
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That is, 3 is obtained by adding the analytic continuations of 9 1 via 

both the upper and the lower half-planes. 

The absence of the n + 2 other solutions from Eq. (k.Yf)  and (^.18) 

is justified by the consideration of 9 in S2 and S_1» respectively. Since, 

for these z, tun and hzo have larger real parts than at x*, any contri- 
' 31     Oc- 

bution of a u -type solution would be dominant over the p. - and up-type 

solutions. Since 9 itself is known asymptotically in S_1, viz., 

e^"1', it follows by single-valuedness that u -type contributions are 

not permitted. 

.It can be readily seen that 9^ ' contains for the square root s, 

for x < x*, s = i |s | and hence is a u -type solution, while 9£   has 

■ s = - i |s | and hence is a u -type solution. To express 9 in most 

convenient form, we now specify 9 and 9? completely (to highest order) 

by specifying the lower limit of integration in Eq. (3.6) and (3.10) to 

be x =0. The k integrals then exist for all Xj/x* and continue to 
o x 

have derivatives E.., provided the integration path for x > x* avoids the 

turning point by a small excursion into the upper half z-pla,ne. With 

this understanding, then, 

?(1) = \ 

9 ~ 9 + a92, for x < x* 

with the coefficient Ctf found to be 
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a(e, £, ■«) = exP ß(e> 5, u) 

ß(e, C, -o) =ft^1+  E^ldz (U.21) 

where C is the contour enclosing x* shown in Fig. 6, 

Im(z) 

0<> ■*x 

Fig. 6 Contour C in the complex z-plane used for the definition of 

ot(e, £, "o), Eq. (^.2l), required for the continuation problem at a, 
2 

turning point x* at which c T\  is increasing with distance from the shock. 
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2 
Profile D. For Class III values of £, c r\  decreases at the turning 

point. The asymptotic expressions of Table II, modified by Eq. (k.l6) 
—>    —> 

are now applicable. For x > x*, we had by Eq. (U.6), 9 ~ 61. Wow the 

entry in Table II which is valid for x > x* and of P^-type is 6^ ', as 

is readily verified by consideration of P, in the neighborhood of x*. 

Now el; 'is contained in 0^ ' which is valid for x < x* as well, i.e., 

for 9=0. Thus for profile.D, 

e^°) for x < x* 

äj1' for x > x*. 

If we now utilize definitions of 6 and 6g analogous to those for profile 

I, viz., x = 0 in Eq. (3.6) and (3.10), with the integration paths for 

II. , h?, k_ , and kp avoiding x* by a lower half z-plane excursion, this 

can be written simply as 

0 ~ 0 for all x ^ x*. (U.22) 

Profile M. To treat profile M, we consider the value of 

i  = i (c T)2)   separately, for the turning point in that case apparently 
O   IllclX 

differs from those we have already considered. We return to its study 

in Sec. 6. For all other Class III values of £, we simply combine the 
* 

results for profile I and profile D. We denote by x* the turning point, 

2 
if any, where c i\  is decreasing and simply use x* to denote the point, 

2 
if any, at which c r\  is increasing.  For those £ for which only one 

turning point exists, the considerations of profile I or D apply. For 

those £ for which two turning points exist, the outer one x* is of the 
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profile D type. The continuation problem there yields 

6 ~ 9 for x > x*, x ^ x* (4.23) 

where 3 and 0« are defined as for profiles I and D, i.e., x = 0, and 

the h., k. integration paths excise x* via the upper half-plane and 

x* via the lower half-plane. The continuation problem at x* is therefore 

typical of profile I, and we obtain 

e ~ e + d§ 9   for x < x* (4.210 

with Oi  given in Eq. (4.21) and with contour C encircling x* but not x*. 

5. ASYMPTOTIC EVALUATION OF V(T, e) 

The asymptotic evaluation of V(T, e) requires, according to 

Eq. (2.7a), the determination of the function L(e, £, u) which to highest 

order in e is 

L(e, £, x>)  * Cb1 + ib2 - 9(0, £, t>, e) • (^ + ihy).        (5.1) 

The evaluation of b and b will evidently be the major task of this 

section, since the scalar product is essentially known from our expres- 

—» 
sions for 9. 

t,  in Class I 

Here we distinguish.between those £ for which h,(x, £) is pure 

imaginary and those for which it has a real part. The former, Re(f;) = 0, 
i 

Z&d)  > (c Tl2)  J 
we denote as Class Iaj and the latter, Re(C) = 0, 

o  max 
l 

Im(t) <  (c Ti2) . -or Re(t) > 0 but t  not in Class II, we designate as \s/  v o 'min     s 

57 



Class lb.    Now the integrals b    and \>0 have the  asymptotic form 

A(x,  i, x>)  exp [eh^x,  £) ]dx 

A(x,  £, x>) = exp [k^x,  £, u)]  [T(x,   0   *  ^1   * A^1 • \        (5.2) 

with h and A regular functions of x. For Class la, h.. is pure 

imaginary and 

•x 
|hx | =J     i^x', i)dx' 

increases monotonically with x. Thus, we can transform to z = |h., | as 

integration variable to obtain a Fourier-type integral, viz., 

\~f     e"ieS A(x, U  u)[i^(x, Ol'hz 
"0 

Since g, is proportional to the chemical rate (see Ref. 3) which vanishes 

exponentially with x, as x -» °°, and since z is linear in x for large x, 

it follows that A and all its derivatives with respect to z vanish at 

z = °°. Thus b can be evaluated asymptotically  in e to satisfy the 

order relation 

b-j^ = 0(l/e) . (5.3a) 

Identical considerations show also that 

b2 = o(l/e) . ' (5.3b) 

For Class lb, h.. has a real part which is negative and decreases 

linearly with x as x ~>  °°. Thus, Eq. (5.2) yields a Laplace-type 
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integral, 

00 

h|   zf     e"eS     |A(X,  £, v) I    [-Re(^)]_1dz 
1     •'o 

z(x, 5) = - ReClL^x,   £)]  . 

Since   |A |    [- Re^)]"    is bounded (say, by M), it follows that 

IbJ    £ M /"     e"e.2dz = 0(l/e)   . (5.^) 
0 

The same order relation is satisfied, of course, by bg. 

£ in Class II 

For those (real) t,  in Class II, 9 ~ 9 remains valid except in 

the neighborhood of the turning points x*. To evaluate b1 and b£ for 

this case, the path of integration can be deformed into the upper half 

z-plane so as to excise the turning points, without altering the values 

of b and b .  Along such a path K, 3 ~ ?1 is valid, and we have to 

highest order 

b1~J exp [eh-^x, £) 3 A(x, £,u)dx, 

as in Eq. (5.2); K extends to x = °°, of course. It is seen from the 

expression for E  in Appendix A that the integrand is regular at the 

+ 
The symbol z  is used repeatedly within this section as a variable of 

integration, but its definition varies with each usage. 
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turning points (although correction terms in 0.. might be singular there), 

and the path K can be replaced by the real axis once more. Just as for 

t  in Class lb, then, 

bx = 0(l/€) 

b2 = 0(l/e). (5.5) 

t  in Class III 

The discussion in Class III becomes considerably more complicated 

by virtue of the singularities in "§ and 9p at the turning point. As 

a preliminary to our discussion, it is useful to first write these 

asymptotic expressions 9 and 9 so that the infinity associated with x* 

is evident. From the expressions for E  and E?? (which determine k 

2 
and kp) in Appendix A, it is seen that, for turning points at which c r\ 

is not an extremum, k., and kp are infinite at x* only in the contribution 

from the - -gd Xn s/dx term, Eq. (A.l6) ; the l/s terms lead to finite 

contributions. Thus we write 

\(x,  5, o) = - k Jin $fc-fy   + k*(x,   U x>) 

/x 
[E1]L + |d Xn s/dx']dx' (5.6) 

0 

and, using subscript + to denote evaluation behind the shock, we write 

_» A 
9 (x) = (T • e.)(s./s)2 exp [eh, + k*] . 
X       m* X   + XX 
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Before considering the specific evaluation of the b integrals, it 

is profitable to ma,ke some general observations concerning them. The 

contribution to the b*s from the neighborhood of the turning point will 

require special attention, for the asymptotic expressions of the last 

section are singular at a turning point and are not valid in its neighbor- 

hood. The method of evaluation is that introduced for Class II values of 

£; the path of integration is deformed to bypass the turning points with- 

out affecting the values of the integral. A certain 6-neighborhood can 

be avoided by writing, in schematic notation, 

rx*-6 rO 

'0 
b =f l(x)dx + 16 /     I(x* + 6elCp)elCpdcp 

+ C   l(x)dx . (5.7) 
*x*+6 

The integrand l(x) is evaluated then from the asymptotic formulas and is, 

of course, singular only at x*. Thus, the result for b will be inde- 

pendent of 6 and we are free to employ the 6 -» 0 limit without regard to 

the fact that the asymptotic expression for 6 loses its validity near x*. 

Profile I 

To evaluate b1 for profile I, we consider four contributions. First 

from the (0, x*) interval, we have, in view of Eq. (U^O), contributions 

r** i   - 
bll  „' 

• X* 
J12 ~ /   92  -x   &t~ 
b.0 = f       90 • A"1 ' g+dx . (5.8) 
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Now u and u are pure imaginary on this interval and the branch points 

of 3 and 3? at x* can be factored by a change of integration variable. 

Thus, we introduce a real variable 

z = - is 

so that Eq. (5.8) becomes 

A 

bll 
exp [ieqx^z)] z2Ax(z)dz 

A 

b2 = fZ+exp [iecp2(z)] A2(z)d^ 
J° (5.9) 

A ~ A 
/>X rZ    2z|i. 

cp.(z) = Im /     Hjdx = Im  /   4 -g-i dz 

^-     iS+^ A      , -1 - A.(z) =  -i— (T  •  e.)   ' A ±  •  g,   exp (k*) 

where d is the derivative of c i\  introduced in Eq. (U.8), and where the 

dependence on t,  and x> has been suppressed. Clearly cp. (z) and A.(z) are 

15 phase  to obtain 

analytic for all 0 £ z £ z so that we can apply the method of stationary 

in 

b^ = 0(e-3^). % (5.10) 

From the path around the turning point arises the contribution 

.0 
b15 = i6/ ?l '&1  'V^ ' 
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Since the integrand is of order 6~4 for small 6, it follows that in the 

limit 6 -► 0, 

h13 = 0 (5.11) 

Finally the contribution beyond the turning point is 

and u is complex with negative real part. A suitable asymptotic bound 

on b... is obtained for its absolute value, 

,biJ sX e"eg(x)s~" isfü. • y * A1
'
-
 «texp (ki) i ^ 

z = /  (Ks/T]u)dx'. 
4* 

Now it can be seen that z has a power series expansion in s, 

beginning with the cubic term. Thus conversion to the integration 

variable z yields 

\\i}    *£  e"eSz-\(z)dz 

l. 

v«) - (Ar)" ^ is7ü. • y • ^ • s* «* w ■ 

Since g, vanishes exponentially in x and k* has, for Re('o) > 0, 

negative real part and is linear in x [Eq. (3.8)], it is seen that A^ is 

bounded, whence 

63 



|b ,| £ M r e'eh'hz  = 0(e-2). (5.32) 
14    JQ 

To establish the order of b , then, we yet require the order of the 

coefficient ö of b . Bat a depends on e only through the integral of 

u (i.e., h ) which is pure imaginary on the x < x* portion of contour C 

of Eq. (U.21). Since u is finite at x* itself, the portion of C around 

x* yields zero in the limit of vanishing radius, whence we obtain 

a=0(e°) (5.13) 

and we combine Eq. (5.10), (5.1l), (5.32), and (5.13) to yield 

■ bx= O(e^). (5-^) 

Identical considerations apply to b2 as well. 

Profiles D and M 

The derivation of order relations in both of these cases is similar 

to that for profile I and in both cases the relation (5.1*0 is recovered. 

Expressions for L 

It follows, then, that the b's can be ignored in Eq. (5.l) and only 

the scalar product remains. For t,  in Class I and Class II, the only 

contribution to 3(0, £, x>,  e) is that from 3 which yields 
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L(e, £, is) -L^O 

\tt) = - 
u (1-v ) v' \cu+ K

+
s

+) 
u

+
u- 

+ \{1-  u+u_ ) 

I =  2 . (1 - T])(l - v )v pq/T v/v-^S' 

(5.15) 

v = v /v 

The new symbols in Eq. (5.15) are T, the temperature, and pg, the 

entropy derivative of pressure p at constant volume v and composition 

\. Here we have used subscripts + and - to denote evaluation in back 

of and in front of the shock, respectively. This is simply the value 

6 
of V for a step shock. 

For t,  in Class III, the value of 6 at the shock depends upon 

whether we are considering profile D or profiles I and M. In the 

-*  -♦ 
former case, we still have 0 ~ 0 so that 

L ~ L (0  for profile DJ (5.16) 

but for those cases where c r\  increases with distance at the shock, we 

have 

L ~ L (0 + a(e, £,u)L2(£), for profiles I and M 

where lAV)  differs from L., Eq. (5-15), only in the appearance of 

instead of s , i.e., 

ij,(o---=-jrH     u u    + H1 - tfr) • 

(5.17) 

- s. 
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Determination of Of 

The coefficient a of the non-shock (Lg) contribution to L for 

profiles I and M is defined in Eq. (U.2l). Letting the radius of the 

circular part of C approach zero, one finds, using E^from Appendix A, 

the logarithm of OL to be 

ß(e, l,  u) = in a(e, I,  u) 

ß(e, £, ») =.rti/2 - ±eß±a±)  + ß2(y - oß5(L) 

1=«i        ^ (5.18) 

r^(^)      /c   f_^   drj     ^Sa^ 
'i / TT|S"] [l-T]    dx "    T      U 

+ ———— dx 
(u2

+^?) U   -I 
2ua« 

(i-n~2+q] 

ß3 = ^i/       Tnrrrdx 

•6 

5 « i5± • 

The subscript v on the rate r denotes the partial derivative at constant 

entropy and composition. We note that ß1? ßg, and ß are all real and 

that ß and ß, are positive but ß2 depends on the equation of state and 

kinetics of the particular system. For profile I, however, it is seen 

that ß„ becomes negative for £. sufficiently near the value (coTl)x=00» 

66 



and in fact approaches - », by virtue of the fact, noted in Sec. 3, that 

-+  -» 

only the a  • r terra continues to contribute to the integral for large x, 

—*     —* \ 
and a  • r is necessarily positive at chemical equilibrium. 

Stability 

At the outset, it is expeditious to assume that the equation of 

state of the unreacted explosive is such that the von Neumann shock is 

itself stable (i.e., it would be stable if the reactions behind it were 

somehow suppressed), for we thereby concentrate attention on instability 

which arises solely from the reactions. Thus, we assume that L, (£) has 

no roots in the right half-plane, and in fact we require that its roots 

have negative real part. It follows that the asymptotic expression for 

V is non-zero for all Class I and Class II values of £, whence any 

unstable roots are to be found with £ pure imaginary and in Class III 

with Re(u) > 0. .Moreover, detonations characterized by profile D are 

stable for large e, since the shock expression for V holds for Class III 

values of t,  as well. Thus we now confine our attention to profiles I and M. 

Now the behavior of L_ has been given in the discussion of shock 

stability, from which it can be seen that our assumption, that L-,(0 

only has roots with Re(£) < 0, implies that L,(£) is positive for 

2    2 
£• > (c T\),   and increases monotonically with £. (see Case lb of Ref. 6). 

Now 0t}  Eq. (U.2l) and (5.18), is periodic in e and has magnitude 

|o | e exp [ß2 - Re(u)ß5] . 

If, therefore, for t,  in Class III, we have the inequality 
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lyiy I exP [ß2(yi < V1^ > (5.19) 

it follows that for Re(u) ^ 0, L = L. + ai^ has positive real part 

irrespective of e and Im(t>). Hence, for those £.  for which Eq. (5.19) 

holds, V has no unstable roots. 

However, if for some £., we have 

|i^(iy 1 exP [ß2a.)] > Lj/iy, (5.20) 

then unstable roots occur for Re(r>) satisfying 

Lj_ = |L2 I exp [ß2 - Re(u)ß5] (5.21) 

at periodically distributed values of Im('o), viz. 

Im(u) = [(2n - |)jt - eß-^ß"1,  1^ > 0, 

Im(u) = [(2n + £)« - eß-^ßj1,   \ <  0, (5.22) 

for n = 0, ± 1, ...  . It follows, then, that every point on the vertical 

line in the u-plane satisfying Eq. (5.21) is asymptotically a root of V 

for periodically distributed values of e, 

e = C(2n - i)rt - Im(u)ß3]ß"
1,  ^ >  0, 

6 = C(2n + £)* - Im(u)ß3]ß-
1,   L2 < 0, (5.23) 

for integer values of n sufficiently large. 
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To understand the behavior of these roots, we consider the 

asymptotic expression for V for finite e. Let us suppose that Ih/I^ 

2 
and exp (ßp) behave as in Fig. 7, which is appropriate for a CQT) profile 

I. The value zero at the right for exp (ßp) occurs by virtue of the 

approach of ßp to - °° as the turning point recedes to x* = °°. Between 

£._ and £.p, Fig. 7, unstable roots occur, as given above, while at 

t.- and t.n  neutrally stable roots occur. This £. interval is seen to sxl    5x2       ° x 

correspond to a series of unstable e-intervals, which for Im('o) = 0 are 

Fig. 7 Sketch of the functions |L-./LJ and exp (ßp) for profile I 

(see Fig. 5) detonations for £. = Im(f)/e traversing the Class III 

segment of the £-plane. Instability is obtained in the e -• °° limit 

for a detonation which has exp (ßp) greater than |L_/LJ , as in the 

interval (5^, £12). 
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(2n - irWß-L^) < e < (2n - iV/ß^ ^, (5.2*0 

for n = 1, 2, ... . Asn increases these intervals overlap, so that for 

e above some value all wave numbers are unstable and no estimate of the 

range of unstable e values is obtained. If the exp (ß„) and L/l^ curves 

do not cross, then no unstable roots occur for large e. 

Two additional points should be noted. First we observe that L, 

2    2 2    2 
and Lr,  are equal at t. = (c TI) . Since we had Of = 0 at £. = (c ri) 

e!      ^        1^0  + 1     0  X=oo 

for profile I, it follows that the asymptotic expression for V behaves 

continuously as £. traverses the boundaries between Class I and Class III 

for profile I as well as profile D. Because of this continuity, the 

2   2 
asymptotic value of V for t,.  = (c T\) _  , a point excluded from all our 

considerations, is taken simply V = eL-At,),  as is obtained by approach 

to this point from either Class I or Class III. 

A second point for considerations is concerned with profile M. It 

2     2 
is evident that V behaves continuously with £. both at £. = (cri). and 

2    2 2 
t. = (c TI)  . At the maximum value of c TI, however, continuous behavior 

can be lacking. Although ß? does become infinite at this point, as can 

be seen from Eq. (5.18), its sign can be either + or - simply on the basis 

of the kinetic coefficients r . If ß„ -» + °°, OJ is also infinite, whence 
v     2     ' ' 

2    2 
It-, dominates L.., while for £. > (c TJ)  , only the L^ term appears in the 

asymptotic formula. It is clear, then, that the complete stability be- 

havior of profile M requires an asymptotic expansion for 6, valid at the 

maximum. This task is reserved for the next section. 
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6. TUBKING-POINT PROBLEM FOR AN EXTREMCJM IN CQT) 

Although the method of Sec. k  can presumably be employed to solve 

the continuation problem facing us here, it is certainly a far more 

difficult problem. In particular, the discussion of Ref. 5 indicates 

the need to solve a connection problem of a rather difficult sort. 

Instead, we tum to the so-called "related-equation method" of Langer, 

with the hope that much of the present problem has already been solved 

in its essentials by virtue of the known solution of certain turning- 

point problems for second-order equations. These second-order equations, 

of the form 

1| + [o^.x) + fcj^x) + R(x, Ä)] u = 0 
dx2 

R=2r.(x)/03i (6.1) 

i=0 

(the absence of a term in du/dx implies no loss of generality^), have 

been solved asymptotically in & for the case of a simple zeroy of ^(x) 

and a second-order zero.   By writing Eq. (6.1) as a system 

u.. = u 

du. 
•3  = ^o dx    2 

du/dx = CD^ • u 

0 
Q = 

- (%+ ^ß + R/' 
A2 

(6.2) 

1 

0 
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we see that the simple zero corresponds to the problem of Sec. k  in so 

far as the difference in the eigenvalues of the leading matrix vanishes 
i 

as (x - x*)2, while the case of a second-order zero of <L)(x) coincides, 

in the same sense with the problem at hand. The present section is 

based upon the exploration of this correspondence. 

The procedure which will be followed is as follows. Non-singular 

transformations of our equations are devised which yield a second-order 

system of the form of Eq. (6.2) and an (n + 2)-order system, with 

interactions between the two systems first appearing with terms of order 

e" in the coefficient matrix, for arbitrary m. The related equations 

are taken to be independent systems of order 2 and order n + 2, with 

coefficient matrices agreeing with the transformed system also to order 

e" . The significance of the related equations derives from the fact 

that their solutions are known. In particular, the related equation of 

order 2 is taken to be the related equation of McKelvey,  while the 

asymptotic series given by Friedrichs form the related-equation solutions 

for the (n + 2)-order equations. The proof that there are actual 

solutions asymptotic to the related-equation solutions has essentially 

been given by McKelvey and is not detailed here. 

Related Equation 

We begin once more with Eq. (2.7b) 

^=[e^(x) + %(x)] .9 (6.3) 
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and restrict our attention henceforth to Class III values of t,  and 

suppose that the x interval under consideration contains a single 

turning point. We wish to obtain a related equation, for any integer 

m ^ I, 

| = [<*>(*) + &.(*) + e-^Cx, e) ] • 9 

R(x, 6) = ^  e-
VR(x) (6.k) 

such that a complete system of n + k  solutions of Eq. (6.k)  are known. 

To accomplish this task, we proceed inversely by transforming 

Eq. (6.3) so that it will resemble equations with known solutions. We 

look for a similarity transform 

e=&(x> £) * *(o) 

&> =3oM  exp [*e/V + ^dx'] (6'5) 

such that, to highest order in the coefficient matrix, the ^fQ\ 

differential equation will be composed of a second-order equation of 

the form Eq. (6.2) and a diagonal, (n + 2)-order system. In the i,QN 

equations, 
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üM-Ä1, [k.'So-*%/**] 

(6.6) 

(the dependence on £ and u being suppressed for the present) we observe 

that L- has, in view of Eq. (3.5) j eigenvalues, •§ u.^, 2^0 n s and 

^^n - i^pn "whence we require Lfi be given by 

ib = -X0(x)  0 

n(x)in+2 

(6.7) 

Vx)= - 4jh = - ^ - Mt2 + vi)/^2 

n(x) = |i51 - [i21/2  = £/T)U 

where I. denotes the unit matrix of order i. It is important to note 

that the exponential in Eq. (6.5) and the matrix L^ do not contain 

algebraic branch points at a turning point, for the square root s does 

not appear. Thus, Q^x) can be found as a regular function of x, and 

this determination is given in Appendix C. In addition Q^ is a non- 

singular matrix (i.e., |QJ ^ 0) for all x. In view of these properties 

of Qj^, it is clear that H(x), Eq. (6.6), is a regular function of x. 
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To proceed further, we look for additional similarity transforms 

which will turn the lower-order matrices of the differential equation 

into block-diagonal form, with the upper 2-by-2 of the special form 

displayed by Eq. (6.2), and at the same time not affect the leading 

matrices which are already in this form. The existence of such matrices, 

of the form 

& =  i+r^Cx)]    exp[6-k+1^ ^(xOdx'J , 

.    16 for k > 1, is suggested by the work of Turrittin.        We let 

. Hw • e = s '00 

iCk)-&•&-.& 

and require that 

dt T  /        \ 

f~> 

L(k)(x,  e) =    V e"\v(x) 
***" v=0 

(6.8) 

(6.9) 

(6.10) 

L (x)  = 

0 0 

I  (x)       0 
0 

&M 

, v ;> 1    . 
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The proof that such S, exists is also given in Appendix C and, again, 

these transforms are regular functions of x. Obviously each S, has an 

inverse for e sufficiently large. 

For any given integer m, the transformations in Eq. (6.9) can be 

terminated to yield 

U(x, e) =U(m)(x, e) = 

L(x, 6) =L
(m)(x, e) 

S(x, e) =sW(x, 6) 

e"VUv(x) 

dt 
dx = [eL(x, e) + e"

1T\j(x, e)] • 7 . 

(6.11) 

If solutions y(x, e) of an equation resembling Eq. (6.11) 

eo 

are known, we will refer to Eq. (6.12) as the transformed related 

equation, for it is readily seen that 

(6.12) 

q> = S_»  S_   •. • S     • y = S  • y 

satisfies an equation of the form of Eq.   (6.U).    In fact, we find 

(6.13) 

R(x,  e) = S  •   (J - U)   'S -1 (6.1k) 

16 



which has the desired power series expansion, since the exponential 

factors in the S, cancel in Eq. (6.1k)  while the (I + e"^)"1 matrices 

have well-known power series expansions for e sufficiently large. Thus, 

we regard both Eq. (6.k)  and Eq. (6.12) as related equations. 

Solution of the Related Equation 

Wow it is clear that the matrix £ in Eq. (6.12) is to be chosen 

to have the special black-diagonal form of the I^(v ^ l) matrices; 

for then Eq. (6.12) decomposes into two independent differential 

equations 

Ll+ [e^o+ eX1+ q(x, e)3 y = Q 
dx 

y(x,  e) = y(x,  e)   •  e± 

m~2 

q(x,  e) = YJ e"\+2(x) + e^efx,  6) (6.35) 

^= [eN(x,  e) + 6-^(x,  e)]  •  p 

m 
K(x,  e) =    V e'VN (x) , (6.16) 

where "p is the projection of y onto the lower (n + 2)-space and where 

we have written 
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j(x, e) = 

0       0 

- e(x, €)  0 

0 5X> £) . 

Equation (6.15) is the type discussed by Langer and McKelvey and we will 

choose e(x, e) so that it is precisely their related equation. We can 

—* 
first dispose of the p equation, irrespective of the nature of the 

turning point, i.e., irrespective of the order of the zero of Xn, 

Eq. (6.7). 

Solution of the (n + 2)-order system 

Wow Eq. (6.16) is of the type considered in Sec. 3 and k  except 

that there are no turning points; instead the eigenvalues of the leading 

matrix, n(x), are everywhere identical, and series solutions can be 

derived by the method described by Friedrichs.  Thus, we set 

p(x,  e) = c(x,  e)  exp e  /     n(x')dx' (6.17) 

whence 

dx =    Nj.00 + ~Ä>(X) +   ••• + —T-N    +—M|«C. (6.18) jjwiLs e*tN   ' m-lowm        m /v~ v ' 

We now demonstrate that, for proper choice of M, Eq. (6.18) has a complete 
A**/ 

set of n + 2 independent solutions which are polynomials in l/e, 

c = 
-v-> 

(6.19) 
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with the degree p as yet unspecified. Substitution into Eq. (6.18) yields 

j\vdcv/dx = yy.e^ ^+1 • cv + 
v^O v=0 M^O 

m-1 
-"M • c . (6.20) 

Equating coefficients of e"V for v < m, we obtain relations independent 

of M, 

de v 

 I = N • c + T"* N   • c  , v < m (6.21) 
dx   A   v   ^*-n+l   v-u' 

in which we define cn = 0, for k > p, the degree of the polynomial. The 

first of these relations (for v = O) is seen to be a linear homogeneous 

differential equation and has n + 2 independent solutions which form 

the columns of the solution matrix ^(x), which can be specified uniquely 

by the initial data, 

The remainder of the differential equations (6.2l), i.e., v £ min 

(m - 1, p), are inhomogeneous, with inhomogeneous terms dependent only 

on c with k < v. Therefore, these can be solved serially in terms 
k 

of the solution matrix^ of the homogeneous part. In particular, we 

obtain a set of n + 2 solutions for each v, namely 

—* 
Now it can be seen that the degree p of the polynomial c cannot 

be less than m-1, for Eq. (6.2l) would yield for p < v ^ m - 1 an 
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algebraic linear relation among the c , k < v, which is not in general 

satisfied. Hence, we have p ^ m - 1, and in fact it suffices to choose 

p = m - 1. 

Wow if we remove the early powers in l/e from Eq. (6.20) through 

-+ 

Eq. (6.21) and let C denote the matrix of polynomials c, viz., 

m-l 

c = yvvc , (6.2U) 
v=( 

wV ' 

then Eq. (6.20) is found to determine M, 

m-l     m-l 
M= - V e-V+1 Y  W   • C   n   • C-1 . (6.25) 

v=l     H=v 

Since C" has a power series expansion for e sufficiently large, it 

follows that the M contribution to j(x, e) has the power series expansion 

required by Eq. (6.12). A complete set of solutions for Eq. (6.18) are, 

therefore, known, and through Eq. (6.17) the solutions p of Eq. (6.l6) 

"are given. 

Solution of the second-order equation 

To find solutions for Eq. (6.15), we must now specialize to a 

particular turning-point problem. Without appreciable increase in effort, 

2 
we can simultaneously treat both types of extrema in c \\.    In order to 

apply the formulas of McKelvey  for the so-called second-order 
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t 
turning-point problem, we transform thus: 

A p 
CD = oe 

6 = i for d2i0/dx2 >Oat# 

6=1 for d2XQ/dx2 < 0 at x* 

Z   =   X   -   X* 

u(z, co) = y(x* + z, Ä/6) (6-26) 

Pi(z)  = _ S-h^x* +  z) 

00 

Q(z, co) = - q(x* +  z, co/6) =    Y! q.j(z)co"0 

to provide a notation sijnilar to Ref. 10. The final equation defines 

the low-order terms q. in terms of the low-order terms of Eq. (6.15). 

The latter equation becomes 

d-- - CÄ2p0(z) + cop^z) + Q(z, co)] u = 0, (6.27) 
dz 

and Eq. (6.27) satisfies the hypotheses made by McKelvey, In particular, 

note that P0(z) is non-negative for real values of z. [it should be 

The reader is cautioned that several specialized symbols are introduced 
and used, particularly between this point and the end of this subsection. 
Many resemble symbols used elsewhere in the report, but differ in some 
detail. Thus, in Eq. (6.26), u, pQ, and px are not to be confused with 
mass velocity and pressure. In addition, the independent varxable z 
differs from that of Sec. k  and 5 by virtue of a translation of the origin 
by x*, but the symbol is identical. 
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recalled that we restricted attention to an interval containing only a 

single zero of X (x).] Following McKelvey, we define 

A 
<t>(z, m) = P0(z)

2 

/z 
*(z)dz (6.28) 

n(z) =  -r  . 
4>(z)2 

Note that 4>(z) is analytic for all real z if we let arg <t> = 0 for 

z > 0 and arg * = jr for z < 0. Thus, arg f = arg CD for z > 0 and 

arg f =  2^ + arg to for z < 0.  [For arg (to), we use, of course, either 0 

or rt/2.] Finally we note that II is regular and non-zero at z = 0. The 

introduction of the variable f has the character of a "stretching trans- 

formation" since it appears in the final solution below as the 

independent variable in the differential equation for the leading part 

of the solution. 

Now McKelvey has shown that the behavior of the solutions of Eq. 

(6.27) for large |tü| depends essentially only on P0(z) and p,(z) and that 

the solutions are asymptotically given by the confluent hypergeometric 

17 functions,   both for finite z and for the neighborhood of z = 0. In 

particular, for proper choice of the function e(x, e), Eq. (6.15), 

McKelvey has shown that Eq. (6.27) has series solutions of the form, 

uv(z, a>) = T(z, Cü)"2[A(Z, Ä)VV(Z, CD) + B(z, cü)yj(z, CD)/CD]    (6.29a) 
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where the prime denotes the derivative with respect to the spatial 

coordinate and where subscript v appears explicitly, not only to label 

the independent solutions but also to show that the polynomials A and B, 

m-2 

A(z, <£) = T]a.(Z)Cü~ 
1=0 X 

m-2 

B(z, <£) = Jj» . (z)üT1 , 
£o 

(6.29b) 

are independent of v. The leading term in these solutions will be our 

principal interest, so we observe  that 

aQ(z) = cosh j(z) 

b (z) = <t>" sinh j(z) (6.29c) 

/.zp-CO -Pl(o)n
U(o)/n\z') 

'W-/ -—mh dz 

It is important to note that j(z) is regular at the turning point, 

z = 0. We have for T the determinant 

T(z, CD) = 
A B/. 0) 

A' + BE/CD    A + B'/S) 

E = CD
2
P0(Z) + &p (0)u\o)/n\z)  + n//(z)/n(z) + k(co) (6.29d) 

m-2 
k(a>) .k.co 

k. = _ i if, :0 = - ^(0)11» . 
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Finally, the functions v (z, &)  are essentially the solutions of the 

leading part of the differential equation and are conveniently written 

vv(z, d>) = n(z)r^Wv[>, k(oo)]  . (6.29e) 

The W , which are of central importance in the sequel, are independent 

17 solutions of the confluent hypergeometric equation 

d2W       r i        2  "I 

^r4-* + T+£7^Jwv = 0j (6-50) 

for the special value p = -jj- • 

Wow the choice of the function e(x, e) whereby the u (z, o>) 

become the exact solutions of the second-order related equation need not 

concern us (beyond the fact of its existence). Instead we now concentrate 

attention on describing the behavior of these u functions along the (real) 

z axis, particularly with regard to the analytic continuation through the 

turning point at z = 0. 

Now the neighborhood of z = 0 is seen from Eq. (6.28) to correspond 

to finite values of f for which the u functions can be found through the 
n A 

power series expansions of the confluent hypergeometric functions, 

wv(t, k) = \>VW 

\ 
(f) =  #V^ fi + ? + P-k *+...] (6.31) 

>P L     2P + 1        J 

■n _ 1  1 
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Although of considerable Importance in proving that the given differential 

equation and the related equation are equivalent asymptotically, these 

relations are of no practical importance in obtaining the desired asymp- 

totic estimates for the u functions. With regard to the latter point, 

we need to consider only non-zero values of z for which the asymptotic 

behavior of the W is seen to be important. Thus, for large |to|, we 

evaluate Eq. (6.29a), using for T the result from Eq. (6.29c) and (6.29d) 

T ~ 1, 

whence we obtain 

uv(z, CD) ~ n(z) ri Tcosh j(z)Wv(t,k0) 

<lW,(t,k_) 
+ 2 sinh j(z)  \f   U J . (6.32) 

Moreover, the derivative of u , which enters into the vector solutions 

y, Eq. (6.12), is found, on using the differential Eq. (6.30) to evaluate 

the second derivative of W , to satisfy for non-zero z 

du        1 f dW (f, k ) 
—I -awir* [2 cosh j(z)      dt 

+ sinh j(z)Wv(t, kQ) 1 . (6.33) 

Now rather than use the M.  hypergeometric functions, Eq. (6.3l)j 
Ki,p 

it is more convenient for purposes of asymptotic analysis to use the 

19 Whittaker functions which can be defined ^ as 
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'»F 
}    r(|-p-k) ^>p   r(i+p-k) ^ 

w ft) =    M-~-r' M. W + —^- M,  (*0 (6.3*0 

10 
and particularly the variant given by McKelvey 

WVW = W , i(^e-VrtX), v = 0, ± 1, ± 2, 

a = (-1)V (6.35) 

in which the argument of the product of complex numbers is understood 

to be the sum of their arguments, and where 

/ -Vrtix 
arg(e   ) = - vjt. 

20 
These have the asymptotic form, 

t(f) = e"^  (te-Vrti)ak[l + 0(1/40 ], for t on Sy 

E  :   (v - 3/2)« < arg f < (v + 3/2)*   . (6.36) 

W 
V 

The asymptotic behavior of the derivative of Wy follows from the 

21 
derivative of the Whittaker functions 

d.W.      -, 
k,P _ *-l j <k - ^\,p - ^ " (k " *)2]Wk-l,pJ 

whence 

dW 
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Now it is evident from the definition of the Ey intervals that 

Eq. (6.36) and (6.37) are not sufficient to complete the expansions of 

u , Eq. (6.32) and (6.33), for z both positive and negative. Therefore 

we require a continuation formula for the W functions. For this purpose, 

22 
we employ Kammer's "first" formula  which is particularly convenient in 

the form given by McKelvey 

\vm -1'^%^ 

for v any signed integer or zero. Using this result in conjunction with 

the definitions, Eq. (6.3I+) and (6.35), and employing the "reflection" 

23 
formula  for the gamma functions, we obtain 

Wv(t) =        2ltie      Wv+1(t) + e2aM\Jf) (6.38a) 
v r(i-ak)r(3/U-ak) v+1 v+2 

connecting three "adjacent" W functions and 

Wv(f) = -e-2akrtlWv+2(t) + ■—^ W  (*) .       (6.38b) 
r(£-ak)r(3A-ak) "^ V 

It is evident that Eq. (6.38a) permits the continuation of the asymptotic 

expression for W from S to the intersection fl(S ., So) whüe Eq. 

(6.38b) permits extension to fl(E„, £ ,). These sectors are found to 

overlap, and further continuation is given by application of the 

formula, 
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which is obtained in the same manner indicated above. 

Now it can be shown that any pair of four "adjacent" W are 

linearly independent [except for special positive values of k = ^ or 3A 

(mod l), for which only adjacent pairs are independent]. It is convenient, 

for the purpose of finally solving the stability problem, to consider the 

v = 0 and v = 2 pair and to obtain from these u functions the correspond- 

ing solutions of the original second-order related equation, Eq. (6.12), 

yv y(x, e) = 

uv(z, Ä) 

e~ du /dz 

0 

0 

0 

(6.39) 

We compute now asymptotic expressions for y^ 'on z > 0, where arg(t) = 0 

or rt/2, by using Eq. (6.36) and (6.37) directly in Eq. (6.32) and (6.33) 

to obtain 

1 

-KS/TJU n(z)e"(^+JV"^,  z > 0 (6.lK)a) 

0 

0 

0 

yv  '(x,  e) 

where 4> has been evaluated explicitly from Eq. (6.7) » (6.26) and (6.28). 

For z < 0, arg f = 2n  or 5^/2, so that we employ the continuation formula 

(6.38b) for Wn and thence expand W?, W, and their derivatives to obtain 0 
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y(0)(x, «) 

1 

.Ks/rju 

0 

0 

0 

1 

/Cs/ip. 

0 

0 

0 

In similar fashion, we obtain 

2kjti 

r(i-k)r(3A-k) 

n(z)e-(^^tk-Vfei, z < o 

(6.1+0b) 

y(2)(x, £) 

y(2)(x, e) 

l 

KS/TIU. 

0 

0 

0 
m 

1 

./cs/r|ii 

0 

0 

0 

1 

KS/TJU 

0 

0 

0 

-2rti 

r(i-k)r(3A-k) 
n(z)e^+^"k^ 

n(z)e-^+^H-2ki , z > 0 

(6.iaa) 

n(z)e-^+;5¥-V2bti,  z < 0. (6.to) 
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-(1)   -(3) We could, in similar manner, determine additional solutions yx  and y1- 

but shall not do so here, for we have no need for these in obtaining the 

—♦ 

asymptotic formula for 0. 

We have now obtained a total of n + k  solutions of the related 

Eq. (6.12), and we denote these y , y2, •••, 7n+^>  where 

y^x, e) = r Hx» e) 

y2(x, e) =y(2)(x, e), (6.te) 

while the remainder are formed from the n + 2 solutions p(x, e) given in 

Eq. (6.17), (6.I9), and (6.23). The final problem is to prove that there 

exist solutions ? of the given Eq. (6.1l) which agree with these yy up to 

terms of order e" , where m is the arbitrary positive integer selected 

9 
in advance. The method of proof follows closely that of Langer-' and is 

sketched in Appendix D. Based on this proof, we have 

?v(x, e)  =yv(x, e) [l + 0(e"
m)] (6M) 

for arbitrary m. 

-♦ 
Asymptotic Evaluation of 6 

We now turn to our main task of obtaining an asymptotically valid 

expression for 8 for the specialized turning point under consideration. 

2 
Again we return to the specific case of a c T) profile having a single 

maximum (profile M). It is seen, then, that the function XQ(x), Eq. (6.7), 

has a minimum, whence in Eq. (6.26) and the following discussion, 6 = i. 
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Now corresponding to each of our solutions i|r , Eq. (6.1+3) > of Eq. (6.II) 

we have, by the latter equation, a solution 3 of the original Eq. (6.3). 

For large 6, it is seen from Eq. (6.9), (6.8), and (6.5) that only the 

transformation JEL is important, and we obtain 

\~2o' % exp/ [*e(,1i + ^ + go] dx' {6M) 

for all x. 

To find 9 asymptotically, we require the particular 6v, Eq. (6.M+), 

which remains bounded as x -> «>. We contend that 9 , in fact, satisfies 

this condition; for, writing out the latter explicitly, using Q^  from 

Appendix C and ? ~ y' '  from Eq. (6.1+0), we have 

^(x, e) ~- *(z)-%- e1)(2ie)
k-*[/%(z')dz/J 

Ik 

exp I A^^I+^+go]dx/ +r\-ie<t>(z/)    {6M) 

P (z1) - Pl(o)n\o)/nV)-| , 
2*(z') 

where T is the transform matrix Eq. (3.l) and where the variable z = x - x* 

must be carefully distinguished from x. Since for x > x*, 4>(z), Eq. (6.26) 

and (6.7), is the real positive quantity 

♦ (z) = pg = - -^i , x > x* (6.1+6) 

we see that the e term in the exponential is 

/x /*X* 
u^dx' + / ^21dx'. (6.1+7) 
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Thus, 6 is of the u type in the sense of Sec. 3. Bringing the function 

of x, other than (T • e..), into the exponential, we obtain the e-independ- 

ent part of the latter to be 

-x rz      jL(x*fz') - 4n(x*)ll\o)<t>
2(z')/ / «(z^dz" 

Hz') 

Jz -^"W 
i  din » dz' (6.48) 

where the point z is an arbitrary positive number, 

and (6.26) 

Now by Eq. (6.29a) 

kQ = - \  i^x*)!!^) (6.1+9) 

while from Appendix C, Eq. (C.8), (C.I9), and (C,20), 

Ks 
V*> =  £ <E11 -  E22) 

30v '[ gn(x) = \   E_. + E_ + 
d in 

11 ' "22 '  dx w. (6.50) 

whence it follows that Eq. (6.1+8) has as its x derivative E , as in the 

asymptotic expression (3.3), as seen in Eq. (3.6). (This is, of course, 

a necessary conclusion since the present asymptotic expressions must agree 

with those of Sec. 3 away from the turning point.) Therefore, the present 

0n is, outside of a multiplicative factor, identical with 0 of Sections 3 

and 1+, and we have, as in Eq. (1+.6), 
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9(x, e) ~\(x, e), (6.51) 

but now without restriction on x. 

The solution for x < x* is, therefore, given through Eq. (6.kOb) 

to be 

- -2Ü2  (2ie)-k-ü   / *(z<)äZ'        (T,- e ) 
r(£-k)r(3A-k)       L ^o     J 

Jfri +  e-Ukrti(2ie)
k^[r*(z')dZ']

k(T>. e2)        (6.52) 

x  exp]   /    [|e(u -HO  
+ S0

]dx'f 
&*)) H ^ ° )    . 

J *(z)2 
e-(2 

Since, for x < x*, <t>(z) is the negative real quantity, 

l 

*(z) = P2, = li^o-, ,     x < x* (6.53) ■0 ~ 2 ^21 

the first contribution to Eq. (6.52) is of the (J. type and the second of 

the u? type. If we rescale 0 so that the u -type contribution is simply 

T • en for x = 0, we can write for x < x* <-*   1 
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/x 

/x x 

0 

(6.5»0 
-x* n2kn r(^-kn)r(3A-kn)       rx* 

a(e, V)) = liei    *^dz       r—^-77—rexpi   <6^ + V< *t) J 2rti exp (6k ni) *0 

x (x*+z) - A (x*)n\o)/n\z) 
äI2 = 

♦(z) 

This is precisely of the form of Eq. (U.21+) for all other Class II values 

of £. for profile M, but with a redetermination of a. 

Now the expression for V(T, e) (whose zeros determine stability) is 

to be obtained from Eq. (6.5*0 and (6.1(5) (the latter must first be 

rescaled as above, of course) by following again the procedure of Sec. 5. 

It follows once more that the final asymptotic expression is given by 

Eq. (5.17) and we turn now to consider the nature of OC  at the current 

value of £. However, there is no need to locate the roots of L, as will 

be seen by considering the magnitude of <2(e, t>). 

Since |i „ is pure imaginary, ja j , in its dependence of e, is seen 

from Eq. (6.5U) to be given by the factor e ^. One finds for kQ, 

Eq. (6.1*9), using Eq. (6.28), 

kQ = - X1(x*)A*'(0) (6.55) 
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and using Eq. (6.50) and the values of E^ and E22 from Appendix A, this 

becomes 

ko = koo-*koi 

L 
00    U*'(0)TIU 

'(1-T))vp, 
S   2u 

u+CJ 

c*r 
T)U 

(i-n)a.7v d M ^ 
T]m dx 

•oc=x* 

(6.56) 

k, 
«i 

01 M>'(0) 

g(l-T)) 
2 2 nil x=x* 

Since k  is positive, Re(k) is clearly negative, provided u satisf les 

Re(\)).> max (0, k /k ). 
TOO' 01y 

(6.57) 

For such t>, then, Cü vanishes in the limit and only the M^-type solution 

contributes to 9 asymptotically. If, however, k0Q > 0, then in the range 

0 2 Re(o) < knn/kni , DO' 01' 
(6.58) 

a becomes infinite. In the expressions for 6 and L, the Ug-type solution 

dominates in the e -* °° limit. This behavior is just that predicted for 

profile M previously; for it is readily seen from Eq. (5.18) that, if kQ 

is positive, then ß2 (in the Sec. 5 expression for a) for (^ near 

i_ 
i(c ri2)   is large and positive. Hence, the {i0-type  contribution also 

^ o ' 'max  . d 

dominates for £. just below the special value of t,±.    Similarly, if kQ is 
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negative, then ßg is large and negative and the l^-type contribution 

dominates. In view of the criterion for instability arrived at in 

Sec. 5, viz. Eq. (5.20), the criterion for instability at the present 

special value of £. is the inequality 

,koo>0 (6.59) 

which is a purely algebraic condition on the equation of state and the 

chemical kinetics, as opposed to the integral condition, Eq. (5.20) . 

Continuity of the Asymptotic Solution for Profile M 

Having arrived now at a stability criterion for all Class III values 

of £, we have completed the treatment of profile M, except that we still 

have not demonstrated that the asymptotic expression for V(T, e) behaves 

continuously with x = e£ + v>  through the point t,  = i(con
2)max- ^  terms 

of 3, the continuity of V requires that for x = 0 the 92 contribution 

should vanish when t,  passes from Class III to Class I; for we recall 

from Sec. k  that for t,  in Class I there is no 92 contribution. 

From the discussion of the magnitude of a(e, u), it is evident 

that in the stable case (kQ0 < 0), the 92 contribution does vanish 

continuously with t,±  since a(e, £, v>) ,  Eq. (5.18), approaches zero at 
—♦ 

t    - (c  n1)   .In the unstable case, however, it is clear that the $2 bi  v o ' 'max 

contribution vanishes discontinuously with t,  at this special value 

i(c rF)       ,  if Re(ü) lies in the range Eq. (6.58). We now will 
o ' 'max' 
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demonstrate that, for less "violent" changes of T =et,  + X>  (i.e., changes 

of 13 rather than £), the 3_ contribution also vanishes continuously. 

Now we have already seen that by increasing Re(u) through the value 

k /km [see Eq. (6.58)], the desired effect takes place. Similarly 

for Re(13) < k n/kni, we will now show that the magnitude of « diminishes 

with increasing Im(i3) and that continuity holds in this direction in the 

T-plane. To study the magnitude of a(e, 13), Eq. (6.5I+), with variations 

21+ 
of Im(i3), we first employ the Legendre-Gauss multiplication theorem 

to write 

r(* - -HQ) r(3A - k0) = r(| - 2kQ)A
2ko+* . 

Consider now the magnitude of « for both e and Im(b) = 13. large; using 

the above identity with Eq. (6.5!+), we obtain 

|a(e, 13) I = KQr(| - 2kQ) exp [2kQ in e - 5^^] (6.60) 

with K_ composed of various factors independent of 13. and e. The gamma 

25 
function is given asymptotically in u. by the formula 

|r[-| - 2 Re(kQ) + 211^^] I ~ £,_ exp [- 2 Re(kQ) in  13± - .k^it^] 

with K_ representing a constant. Combining this with Eq.. (6.60), we see 

that |cu I becomes small for 13. of order of in  e, i.e., 

13. > 13. 
1   ic 

13. 
1C 

= Kg in e  . (6.6l) 
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The continuity of the asymptotic theory for profile M is, then, 

established. 

7. A - B DETONATIONS 

The preceding theory is here applied to the idealized, one-reaction 

A -*  B detonations, having Arrhenius rate constant.  The equations for 

the steady flow are given in Ref. h  and are repeated here only in so far 

as required. The notation of that article is slightly modified here; we 

note particularly that in the present notation the Mach number of the 

shock is K    (rather than K,  which we use here for the local Mach number) 

and that the frozen sound speed is c (rather than c), so that the frozen 

sound speed in the quiescent gas is c  (rather than c ). 

2 
Profiles of c ri 

o ■ 

One readily computes this quantity in terms of the mole fraction 

A. of reactant A to be 

c r\ =  J5- (1 - cu|)l 

i2(\) = i - (i - x)  o/n 
(7.1) 

03= (K2_   -   D/(7/_   + 1) 

n= 7O(K2_ -I)2/2(7
2

O-I)KI 
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where Q is the heat of reaction in units of RT_, and where £  varies 

between 1 at the shock to some equilibrium value | ^ 0. Since X decreases 

to zero monotonically according to the Arrhenius rate law 

dx/dt = - £\ exp (-E*/RT) (7.2) 

(where £, the pre-exponential factor, and E , the activation energy, are 

2 
constants), the derivative of c i) with respect to x has the sign of 

(2CD6 - 1). 

A particularly simple case arises if the ratio of (frozen) 

specific heats y    is taken greater than 2, for then (2oi| - l) is readily 

seen to be negative for £  = 1 and hence for all 0 £ X *  1, irrespective 

of detonation velocity and irrespective of heat of reaction. In this 

case, all detonations exhibit profile D and are stable asymptotically in 

e. 

For 1 < y    < 2. we examine 2ca£. - 1 at the shock (| = l) and find 
' o   ' 

it to be positive unless 

Kl  < 5/(2 - 70). 

For "normal" values of y  , i.e., less than the ideal-monatomic-gas value 
' o 

of 5/3, it is not expected that detonations will have such small velocities, 

but for sufficiently small heats of reaction, viz. 

Q < 5(r0) 

S(rJ = 7„(r0 + D/6(2 - 7n)(rn - i)' (7.3) 
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the CJ Mach number 

K2_CJ  = 1 + h (1 + ^h2)2 + |h2 

h2 = 2(7
2 - 1)Q/7Q (7.^) 

is less than 3/(2 - y  ). Thus the situation for Q < Q, is that, for 

K < 3/(2 - 7 ), c TJ decreases with distance at the shock and throughout 

the reaction zone and exhibits profile D once more. 

2 2 
For K   >  3/(2 - 7 ), c r\  is increasing at the shock, but not 

necessarily throughout the reaction zone. Since £ is monotone-increasing 

in X  (which decreases with x) and since (2OD| - l) is monotone-increasing 

2 
in |, it is seen that c r\  has at most a single maximum. Now the value 

of (2a>! - l) at equilibrium is negative for the CJ detonation (for £ 

vanishes at X  = 0 in this case) but becomes positive for sufficient 

overdrive since, by Eq. (7.l), <; remains unity throughout the reaction 

■ zone in the limit K   -» °° . There exists, therefore, a transitional 

Mach number K  , above which (2CD^ - l) is positive throughout the 

detonation. One finds 

2 
K  t = 
-t  k-y 

h2 + ^^^).^$L]\. (7„ 
2 

The behavior of c n is summarized in Table III for all values of the 
o ' 

parameters. It should be remembered that the possibility of instability 

is limited to profiles I and M. 
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TABLE III 

2 
Classification of the profile of c 1 versus distance x in the steady 

detonation, according the types in Fig. 5, for the A -> B idealized 

detonation. 

Heat capacity   Reduced heat of     Mach number of 
ratio, 7        reaction, Q       detonation, K_      Profile 

> 2 all all D 

< 2 < Q(7Q)      K
2

_CJ * K
2

_ <  3/(2 - 70)     D 

3/(2 - r0) * <; < K!t 

2    2 K t  S /c_ 

M 

2    2 

General Considerations of the Stability Criterion 

The implications of the asymptotic theory can be found by the 

evaluation of exp (ß2) and I^/Lg for Class III values of £, for specific 

values of the reduced heat of reaction Q,, the reduced activation energy 

+   + 
Q = E /RT , the heat capacity ratio y ,  and the degree of overdrive 

<2X 
point x* by £*, then the correspondence between t.   and !■* is 

f = K/IC.    If we denote the value of |(\), Eq.  (Y.l),  at the turning 
—     —00 
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i. = vf+(ü{y0+ l)(l -   <ü|*H*/(l - ü>)  . (7.6) 

Transformation of Eq.  (5.18)  to the variable 

z(i) = [(1 - m|*)6* - (1 - coiHP (7-7) 

yields for ß2, after substitution from Eq.. (7.1) and (7.2), 

•2(1) 
ß2(C.) = 2o)[(l - o)i*)i*]2 y    I2(z)dz 

0 

-IT, I2(z) = [(1 - o)|)(1 + 0)7ol)r
2(2cDi - 1)" K(z) (7.8) 

2(l+o)7 i)(l-0)i) 

K2).(r0-i)(^-i) -^ 
(i-o)i)2+o3(7o+i) (i-a)i*) i* 

~2-,i 
|(z) = (2er))"111 + [1 - Wl - o)|*)i* + W ]2 \ 

The activation energy term is given by 

,*  (7 +l)2^ , 
W - / °jj   g Q*[l + 0)yoi)(l - 0)1) ]-

X  . (7.9) 
ro - 

Now it is evident that ß? becomes large and positive for large activation 

energy and, in fact, becomes linear in Q . For any £.  for which L2 xs 

non-zero, it follows that the detonation becomes unstable for all suffi- 

ciently large activation energies. On the other hand, it can be shown 

that for all sufficiently large detonation velocities 

JL-j/Lg I > exp (ß2) , 
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and hence detonations are stable for large values of f. 

In addition, a sufficient condition for instability can be derived 
l. 

by a comparison of the derivatives of exp(ß2) and L-j/Lg at (^ = (c^
2).,.. 

The derivatives with respect to £. itself do not exist, but we have 

"äßr 

WDL 
2(x> 

z(l)=0 "  (2^(1^)*   L 
<r0 - *> 

(*-') 

2üV1 

CD 

rvL
2] 

Ld2(l) J~(l):=0 

kf 

(l+CD7o)2 

(7.10) 

where z(l) is given by Eq. (7.7). If the former exceeds the latter, the 

exp (ß2) curve leaves the value 1 at the left in Fig. 7 above the I^/l^ 

curve, whence the flow is unstable. The neutral stability point with 

respect to this condition yields a transitional activation energy Qj. 

for each Mach number 

(2oj-l) (2^-1) 
<(,2j= ^[i + 03(. r0--LJ 

(7.11) 

which is independent of Q. For Q* > Q£, the flow is unstable, while, for 

Q* < Q*, the exp (ß ) curve begins below the I^/l^ curve. For fixed 

values of Q and 7 , the value of Q below which the latter situation 
' o 

[with regard to exp (ßg) and L-j/l^] holds for all detonation velocities 
± $ 

is evidently given by the minimum of C^. Now the minimum of Qj. (for 

profiles I and M) occurs at the smallest detonation velocity. Thus, for 
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Q, < §, the minimum is at the profile D-M transition, where 

<m - «*B/<2 -70)3 = 5^77. «« «<"«• (7.B.) 
'O' 

and, for Q, > Q, at the CJ detonation velocity, 

«4.-<(«!«). *»«>«• (7-aa) 

In order that a system with given Q and 7Q be asymptotically stähle for 

all detonation velocities, it is, therefore, necessary that Q < Q^. 

Numerical Results 

An IBM-7O9J+ computer was programmed to evaluate ß„, L.., and Lg 

throughout the turning-point region 

(c T!2)  < i.   <  (c T]2) v o ' '+   1  v o ' 

1 
I max 

% 2   2 
for specified values of the parameters Q, Q, , f, and 7 . For K_ < K    t 

i_ 

the value of kQ0, Eq. (6.56), was also evaluated for £ = ("V^max in 

order to ascertain stability at the maximum of profile M. A plot of 

exp (ß„) and |L /L2 | as functions of £., as discussed in Sec. 5 in 

connection with Fig. 7, demonstrates instability by the presence of a 

region for which the exponential lies above the |L,/Lp | curve. It is 

to be noted, however, that, in the absence of a back reaction (B -♦ A), 
JL 

ßD(£.) does not approach -0= as £. -» (c r\2)       , but attains a finite 

value, as seen from Eg.. (7.8). This value of £. (corresponding to the 

turning point being at x = «*>) is characterized by a discontinuous 

behavior of 6 and V, much like that previously discussed for profile M. 
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Inasmuch as this phenomenon is purely a result of the reaction model, there 

seems to be no compulsion to investigate it further. 

The results of our numerical analysis for JO =  1.2 can best be 

shown in the form of the neutral stability curves in the (Q, f)-plane. 

In Fig. 8 are shown these curves for the activation energies of Q, = 50 

and Q* = 10. It is seen from Eq. (7.12) that, in both instances, the 

2 
profile-D-to-profile-M transition locus, viz., K_ = 3.75, is also a 

neutral stability locus. The rightmost neutral stability curve has a 

more complex structure for Q = 50. The lower section, i.e., the portion 

below Q « 1, corresponds within numerical error to the constant Mach 

number root of Eq. (7.H) for Q^ =  50, namely, /T = 7.O8U. In the 

unstable region to the left of K_  = 7.O8U, the exp (ßg) curve "begins" 

above the |L../II0 | curve, but for some £. = C.? falls below the latter, 

as in Fig. 7. With increasing f, t,.^  is found to decrease, apparently 

—     2 
merging with t,      = (c r\2)    at K = 'J.OQk. 

x±    o  +    - 

The upper section of the rightmost neutrally stability curve does 

not correspond to the necessary condition, Eq. (7.H). For fixed Q, 

above Q, w 1, the exp (ß2) "begins" below the | L-j/lig | curve when 

P K 
K    >  7.O8U, but for the range, £... < C. £ (c r\2)      , lies above the 

|L-/Lp I curve. These £. are then unstable, but, with increasing 

detonation velocity, the unstable range of L decreases [i.e., (^ 
1. 

approaches (c T^
2
) _oo], finally vanishing (at the neutrally stable value 

i_ 

of f) with £._ = (c T]2) 
' '        ll   v O  ' X=c° 
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For the smaller activation energy, Q =10, the unstable regxme 

is considerably smaller, and the rightmost neutral stability locus lies 

to the right of the root of Eq. (7.II) for 0^ = 10, at least for Q £ 0.5 

and lies very near to this root for Q < 0.5. If a "bulge" of the type 

seen for Q, = 50 exists, it is very small in this case. It should also 
+ 

be noted in connection with the Q = 10 results that the previous long- 

wavelength calculations found instability in regions of asymptotic 

stability. Thus, the Q = 50 detonations were previously found to be 

unstable, apparently for all degrees of overdrive while the asymptotic 

theory predicts stability for all f > l.OU. 

The most astonishing feature of Fig. 8 is the presence of 

instability for a range of f values at all positive heats of reaction. 

k 
This feature was not present in the long-wavelength calculations but 

its correctness is indicated by the fact that we have been able to 

calculate an unstable root for Q = 0.1, f = k.O by means of the numerical 

program described in Ref. k.    This program is ineffective for large values 

of e by virtue of the inability of the program to integrate the 9 

differential equation when the magnitude of the eigenvalue (having negative 

real part) of - P'(», T, e), Eq. (2.U), is large. This is the case for 

large e, except in the turning-point region of the x-plane. Therefore, 

by computing ß and ß as well as ß2, 1^ and L2 for a particular value 

of t.  for which the condition for instability holds, we find a root of 

the asymptotic expression L., + dL2  to occur at the point, [see Eq. (5 ,l8) ] 
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Re(t>)  -                    "B  (ü.) 
3    i 

(    Wsß^.), for L^i^) > 0 

€  =     J (7.13) 

(   ^/sß.C^.), for L2(i^)  < 0 

Im(T) = eq  . 

For £. = l.T528l8 u , we obtained the asymptotic root 

e = 15.77321 

T = 0.001811 + i 27.53626. (7.1^) 

We have also determined an "exact" root of V(T, e) for this value of e 

by determining V, by means of the numerical calculation of Ref. k, for 

an array of values of T near the predicted root. Interpolation yields 

the root, 

T = 0.0021383 + i 27.536277. (7.15) 

The units of length and time for l/e  and 1/T, respectively, are the dis- 

tance and time to half-reaction, as in Ref. k.    The accuracy of the "exact" 

result cannot be expected to exceed the third digit to the right of the 

decimal point. 

The transition to stability for all Q and f has not been 

intensively investigated; but for Q* < k/3,  it follows from Eq. (7.I2) 

that the sufficient condition for instability is not satisfied, 
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irrespective of Q and f. Numerical evidence suggests that, as the 

activation energy approaches Q* = k/3  from above, the rightmost neutral 

stability curve approaches the profile D-M transition locus. Hence 

for Q* < k/3  it is believed that all detonations in this system.are 

stable for small transverse wavelengths. No attempt to prove this 

conjecture has been made, but it has been proved to be at least 

approximately true. 

One final point seems worth mentioning, namely the approach to 

Q = 0, the step shock. The exact expression for V(T, e) is known for 

the step shock, of course, namely 

and this has no roots on the imaginary t,  axis. As described above in 

conjunction with Fig. 8, the asymptotic theory formally predicts for 

Q = 0 a range of unstable shock velocities, dependent upon the 

activation energy, Q > k/3*    In the Q = 0 limit, however, it can 

readily be shown that ß -» 0 and ß, -» °°. Thus, according to Eq. (7.13), 

the rate of growth of the predicted "instability" is zero while the 

wavelength vanishes. Thus, while the asymptotic theory is not exactly 

continuous at the Q = 0 point, it does not predict an incorrect result. 

8. DISCUSSION 

It is clear from the numerical results for the idealized system 

that the asymptotic theory provides considerable additional information 

on the behavior of detonations and. obviously should be an integral part 
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of any stability calculation. In addition, the possibility that rather 

small-scale transverse disturbances [the wavelength of the root, Eq. 

(7.15), is about 0.1 in units of the distance to 95/0 complete reaction] 

are unstable, even though long wavelengths are stable, is certainly not 

contrary to experimental evidence. The latter seems to indicate the 

presence of small-scale, transverse inhomogeneities even when the 

conditions are well removed from those associated with spin. 

Although the present theory does not completely describe the 

stability behavior of a detonation, it does, nonetheless, provide a 

computationally simple criterion, the fulfillment of which is a 

sufficient condition for the growth of disturbances. The application of 

the present theory would appear to be entirely feasible, irrespective of 

the number of chemical reactions and the complexity of the equation of 

state; in this respect, it might well represent the only theoretical 

test of stability which is available. 

In connection with two- or three-dimensional calculations of time-^ 

dependent, reactive flows (should such ever become feasible), the 

presence of asymptotic instability has the greatest importance. In a 

calculation, involving no transport effects, continued refinement of the 

mesh would evidently increase the number of permitted unstable modes, 

and a mesh extrapolation would apparently be meaningless. A realistic 

inclusion of viscosity presumably would be required. 

110 



APPEKDIX A 

The matrices A.A. and B are given in Ref. 3 in terms of functions 

of the state variables in the steady flow. The inverse of A is readily 

found to be 

. ill 
Tim 

0 
(l-Tl)Pg 

2 
Tim 

(l-Tl)p^ 

2 
Tim 

m 1-T1 0 
(i-n)ps 

Tim 

(l-Tl)l^ 

Tim 

»-I      1 A      = —• 
*»x        u 

0 0 1 0 0 

0 

0 0 

I **n 

(A.l) 

where I denotes the unit matrix of order n, m is the mass flux u/v, and 

p is the pressure. Subscripts S, v, and \ denote partial derivatives, with 

the remaining variables of the set held fixed. 

The calculation of $_, Eq. (2.76), involves a matrix product 

yielding 
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io = 

T)U 

T]imi 

i(l-Tl) 
Tjm 

(l-Tl)Pg5 
 ^  

f]m u 

(i-n)p^ 
 2— 

Tjm u 

TJU 

im 
0 0 

(MS 
T)U 

0 0 0 

i I 
u 0 0 

(l-T))Pg£ 

T}mu m 
I 
u 

0 

•nmu. m 0 II u <*»n 

(A.2) 

The eigenvalue-eigenvector problem, 

% - »il) ' \ = ° (A.3) 

proceeds by finding the determinant of the coefficient matrix to be 

(A.U) 

This has roots as follows: 

^= - k [^ + s] 

^2 - " ^ M  -  ^ (A.5) 

^ = ^ = = ^k =   S/1 
n+k 

u 

s =  [£    + CQTI]2     . 
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The determination of the corresponding eigenvectors is somewhat 

laborious but straightforward. The T± form the columns of the matrix 

ms 
Ku 

I 
u 

T 
AW 

KSPc 

mu 

mu 

which has inverse, 

KU 
^ms 

n-1 

Ku 
2"ms 

0 

(i-n)Pc 

m 

(l-Tl)p- 

m 

ms 
Ku 

i 
u 

- 1 

KSpc 

mu 

KSP£ 

mu 

im 

i-n 

u Kt,+ s 
2s" T+Ks 

U     Kt,-S 
£s t^KS 

.  2 
xu 

i  -u 

m(£ -u ) 

I 
u 

0 

2Ks{i+KS) 

.     2 
1T)U 

u£ 
72—2" £ -u 

^ps 
m(^-u^) 

(A.6) 

0 

I 
A»-n 

0    0 

0    0 

0  0 

0 

(A.7) 

I 
A»n 
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The calculation of the matrix £, Eq. (3.2) is a laborious procedure, 

which we now indicate. We had 

«, = [A"1 • (B + -oi) y 
«•1    ftX ***   *»» 

= Wn + ^(A-
1)' (A.8) 

whence we write 

E = E<°> + ^ 

E(0) = T-l . [W . T _ dT/dx] (A.9) 

E(l) = T-l . (A-1)' • T. 

The matrix W,   is obtained from Eq.   (A.l),  and matrix B is given in Ref. 3 
A*l *•* 

in terms of the gradients in the steady flow and certain rate coefficients. 

The gradients can be written as products of thermodynamic functions and 

the chemical rate, so that B can conveniently be separated into a term 

linear in the rates and a term linear in the thermodynamic derivatives of 

the rates. Thus we write 

B(x) . A + & (A.10) 

with B_ vanishing at equilibrium. Explicitly 
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-»  -» -»  -> 
mcr-r      mr»V]j 

71    "  (1-TLT 

2 -» - 
m vg»r 

o 

g»r 
mil 

-» -» 

0 

uT 

—> 
r 
u 

0 

0 

r-V(ps) 

m 

y vcr.r 
'o 
"FT o 

0 

r«V(p£) 

m 

(4- 
(A.ll) 

ma Bn has but two non-vanishing rows, 

e. . Bj_ = 0,  i = 1, 2, 3 

% 
B-, =  [r , 0, 0,; r , r->] . «- 

v S' -\- 
(A.12) 

Bi = - tr,r, 0, 0, rg, r-] v 

Here a is the important thermodynamic function defined in Ref. 7, V is 
—> 

the gradient operator in \-space, also given in Ref. 7> while subscript \ 

denotes the partial thermodynamic derivatives, as previously noted. In 

addition, we have the following identifications: T is the thermodynamic 

temperature, y is the usual ratio of frozen specific heats, AF is the 

free energy increment, and ß is the frozen expansion coefficient 

ß = (ov/ö-T) r» 
o  v '  'p,\ 

115 



,-1 Multiplication by A" , Eq. (A.l) with subsequent transposition yields a 
*~x 

corresponding pair of terms, 

Ä.0 = ^ 'A1' (A.13) 

W_. =-[A"1 • B.]'  • 

The explicit formulas for each are 

/wAO     u 

rg(l-n)       ^s]  g-r      r-VT) ["2-Ti      ^sl   mg-r      mr-' 
[   1     "   T J   Ti     np^n)       L n   "   T J    Ti       T^T. 2L 

(£-5TI)?.? 

mTi 

j-    (i-n)7-9(p ) 

2(1-Ti)g.r 
 2  

- -    (i-n)r.9(p ) 
nc 2~ 1 vo t|m 

TIC 1     \! T)m 

2 - - 
m vg-r 0   -H^TT      ° 

JFT r 
uT u 

7 vg.r 'o 
"FT 

■3N-S(^   -^K)-s(^]    ° (^ 

(A.lil-) 

(where c  is the frozen, constant volume heat capacity): and Wn n has x VO ' £■ o / ? AW.ll 

three non-vanishing rows, 
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e.   . W.n = 0, i = 2, 3 

61      ALL 

% 

e5 

JL A ii    üE o —  11 

w' = fs.. I". £,. £, o, ä., 11 (A.i5) 

it ^ . f    ™ u°     n   ^      T 1 

The calculation of J3, Eq. (A.9), involves differentiation of T^as 

well as matrix multiplications, and we display only the final result for 

several elements. Thus, we obtain 

■    (o)_    ^P££ +^.^ 1+     2^ dn 

+ £Lrj-^.I?£2-lSl-|i^ (A.16) 
2TJS |_1-TI dx Tu m   J     2      dx 

K£+S £cr»r 
£ + /CS   ST1U 

(1)   =   _   K(S|+KS) 
11 uns 

For E?p one obtains a result equivalent to E^, when the square root s 

is replaced by -s. The off-diagonal elements of E^ do not enter into our 

final discussion in any important way but it is of interest to note that 

the element 
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E, (o) _ i • r 
21 

2T]U 

(2 _ n) ^—j- i^i^y sr 

+        2lpi " STJS 
A.M +  ( 
1-T] dx      y 

2 - n 
*nvp£ 

-* -» ■ 

)-» ->      ff«r 
O'T V 

(A.17) 

,   1 a in B  ,  *S-s ?.?_, L(0 _    ) + (2-5tl)c] 2   dx    ^^L s   J 
is singular at a Class II turning point, where ({; - Ks) vanishes. It is 

seen from Eq. (3.7) that the first correction term to 6 is singular, 

then, even though the leading term is regular. 
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APPENDIX B 

In this appendix, we prove that unstable roots of V(T, e) occur 

in conjugate pairs in the T-plane. For this purpose, it is sufficient 

to show that, by suitable choice of the arbitrary multiplicative constant 

in 9(x, T, e), V(T, e) is an analytic function of T and is real for all 

real values of T. 

Now V is given by Eq. (2.3) which can be written in the following 

—»-♦-♦—» 

fashion, using the vectors g^, g , ht, and h of Ref. 3: 

v^> O^^-A-1'! 

*ti 
gt2 

0 

st5 

+ ie 

- 9(0, T, e) • { T 

h 

h 

tl 

t2 

0 

h tk 

h t5 

+ ie 

0 

0 

?y3 

o 

0 

0 

0 

dx 

(B.l) 

h 
y3 

o 

o 

From Appendix A, Eq. (A.l), it is seen that the products of A" with the 

g vectors have the same zero elements as the g's themselves. It follows, 

then, that V(T, e) is real and analytic (for real T) if 6 is analytic and 
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Re[3(x, T, e)] • e = 0 

Im[3(x, T, e)] • ei = 0,    i = 1, 2, h,  5. (B.2) 

Now the differential equation for 6, Eq. (2.4), has the coefficient 

matrix -P'(x, T, G) 

P'(x, T, e) = {A"1 • [TI + ieA + B]}' (B.3) 

which has real part 

{A"1 • [TI + B]}' (B.U) 

and imaginary part 

,-l (A"X • A )' . *"X   »v •y 
(B.5) 

From the fact that B has only zero elements in column 3 and in row 5 

[See Appendix A, Eq. (A.ll), (A.12)], it follows that the real part of 

-P' is diagonal-with respect to element 3> i.e., it has the same block 

diagonal form of A" , 

^ M12 ° \k % 

^21 '%> ■■ ° \h % 

0 0 VL3    0 0 (B.6) 

\l      Mfe o     \k     % 

**>1      ^2 °      V      % 

On the other hand, the imaginary part is found to be of just the 
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complementary form, i.e., it has non-zero elements only in the off- 

diagonal positions of row 3 and column 3. Hence, if 9 has the form of 

Eq. (B.2), then de/dx also does, and, by repeated differentiation, so do 

all its derivatives. If, therefore, 9 has the form of Eq. (B.2) for any 

x , it does so for all x. 

Unfortunately the only point in the reaction zone where 9 can tie 

determined is in the equilibrium state, x -> ». It turns out, however, 

that the property (B.2) holds in this limit and its validity there is 

sufficient to establish it everywhere. We begin by demonstrating that 

3   -» the asymptotic form of 9, as x -* °°, 

?(x, T, 0~e^T> 0 V(T, e) (B.7) 

has the property (B.2). Now n(-r,e) is the eigenvalue of -£'(», T, e) 

having negative real part and V(T, e) is the associated eigenvector. 
—> 

Since P is analytic in T, |i is also analytic and v can be chosen to be 
Aw/ 

analytic.2  Wow the complex conjugate of -P,' has a single eigenvalue with 

negative real part. It can be seen from the properties previously 

ascribed to its real and imaginary parts, Eq. (B.k)  and (B. 5)J that the 

following relationship holds: 

p/*(», T, e) • V^T, e) = H(T, 6)VX(T, e) 

1 

V^T, e) = (B.8) 
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where •* denotes the complex conjugate. Thus 

U*(T, e) = U(T, 6) (B.9) 

and |i is real. Moreover, v* is also an eigenvector of -P'} whence the 

eigenvector 

V2(T, e) = itv + vj - i(v - vj)] (B.10) 

has the property (B.2). 

To complete the proof, we obtain an explicit solution for 9, 

valid in the neighborhood of equilibrium. To do this, define a new 

independent variable 

*M -.[iftrl®]* (B-^ 

where S(x) is the entropy in the steady reaction zone Which is constrained 

to increase monotonically with x by virtue of the second law of thermo- 

dynamics.  Thus z(x) varies monotonically between 1 at the shock and 0 

at x = oo. 

The differential equation for 8 becomes 

~Z = $z' T> e) • e 

dz 

Q = — P'(x, T, e) (B.12) 

where $ is the entropy production, - £F«r/T, a non-negative thermodynamic 

function. The 7=0 point is a singular point of Q by virtue of the 

fact the $ vanishes. 
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Now throughout the reaction zone, the thermodynamic functions of 

state, under the steady-state constraints, were shown by Wood and 

Salsburg^ to "be regular functions of the progress variables K,  so that 

P itself is regular at z  =. 0. Near equilibrium, the entropy production 

$ is of second order in \  - \(°°), and the entropy gradient in \-space is 

of first order. Thus \ - \(») vanishes linearly in ~, and Q has a 

simple pole at "z = 0. In some neighborhood of z = 0, the series 

,= r-)'11?\ n       
k=0 

(B.13) 

converges, and the leading term Q. is proportional to P'(», T, e). 

Convergent power series solutions of Eq. (B.12) can be derived by 

27 
application of the theory of singularities of the first kind , and the 

lone solution bounded at z =  0 can be picked out, viz. 

?(z, T, e) = f- 
CO 

I + z Y] G, ik 72 . (B.lM 

Here we have employed ft and vg for the eigenvalue and eigenvector of G^, 

so that £ is real and positive [opposite in sign to u- of Eq. (B.7)] and 

v2 is given by Eq. (B.IO) to have property (B.2) . Now by Eq. (B.11^) the 

quantity 

S = (i)"4" 3(z, T, e) (B.15) 

is regular at z"= 0, and its derivative 

(B.16) 

\""  """ /        L *       z   -1 
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will also have the property (B.2) at this point, as follows from 

the previously discussed properties of P'. In fact, all the derivatives 

obviously doj and, since these are precisely the higher coefficients 

in Eq. (B.lU), it follows that 9 itself has the desired property. 
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APPENDIX C 

The transformations of Sec. 6 begin with j^ which satisfies Eq.. (6.6) 

[^ - * (^ + n2)£l • & - Ä) • £o (ci) 

The simplest route to finding^ is by first diagonalizing the coefficient 

matrix on the left. We have, from Appendix A, 

T-1 . [^ - |(ii1 + ng)l] • T = Diag [- M-21/2, ^21/
2> n(x) >   •••» n(x)3 

(C.2) 

and we require the transform 

Diag [- H21/2, ..., n(x)] • E = H • LQ. (C5) 

One readily finds 

T]u/2Ks 

T\M/2K& 

0 

Thus 

& ~ & * & 

has columns 

Ä)  *  61 = 

A 

0 

-  £/u 
i 

0 

0 

e. = T ■■■•  e.  , 

in+2 

& 
e„ = 

mri/(l-Tl) 

0 

0 

-  nPg/m . 

j = 3,  4,   •••, n + k. 

(o.h) 

(C5) 

(C.6) 
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Moreover, since we had 

E = T"1 • [3> • T - dT/dx] 

we have for the matrix H, Eq. (6.6) 

H = H"1 • [E • H - dE/dx] . (C7) 

Thus H differs from E only in the first two columns, 

H •  e    = 

\ (EX1 + El2 + E21 + E09) 

?TU 

J22' 

(Ell + Ea^ " E21 - E22> 

2    (E5]_   +   EJ2^ 

2  (Ein + El£) 

\ (E51 + E52) 

H •  e„ = 

TJU 
(Ell " EHJ? + E21 " E22^ 

\ (Enn   - Enp  - E?1   + Epp)   - d to(riu/Ks)M 11 12 21 22' 
Tfcl 

2T^ (E3i - E32) 

(ER1 - E52)« 
T)U 
27^ ^51 

(C.8) 

It should be emphasized that, despite the appearance of E and s in Eq. 

(C.7) and (C.8), H is a regular function of x by virtue of Eq. (6.6), 
I-1 

(C.6), and (A.6). 

In order to prove the existence of the transforms Eq. (6.10), we 

employ induction. Thus we first show that the transformation 
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+<0) -£•*(!) 

£i = [£ + €"\^ exp f godx' (c#9) 

yields 

-# = t^Cx) + Ll(x) + e-^^Cx, e)] • ?(1) . (CIO) 

Now differentiation of Eq. (C.9) yields 

Using the identity 

we have 

e4= eLo+ & "Ä.-ÄL *£o + £,-go£) 

- + (I + e"1^)"1 • (H • ^-d^/dx)] . (C.12) 

The terms within the "bracket have the desired power series expansion 

irrespective of the choice of CL and g so that we need only show that 

AWO "SQ. ^*L   *^O    *»•  o»— »«~i 
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for suitable choices for QL   and g . 

To solve Eq. (C.13), it is convenient to drop the subscripts on 

QL   and write the matrices in block form, 

H = 
wll JS12 

»  io " 

"T° ill 0 

£21 &2 0 Jk2_ 

where H      is a 2-by-2 matrix and EL» is an (n + 2)-by-(n + 2).    Then 
ill i£2 

Eq.   (C.13) becomes 

ill " g0i2  " ALL  * ill + ill  ' ALL = ill 

H. 02  - &2   * &2 + ill  * &2 = ° 

i2l"i21  -ill+i22   *i21= ° 

J22  " goin+2  "^22   * ie2 + ifi2   * &2 = i22 

Since Lp„ is n(x)l    ?, Eq.   (6.7)5 we have 

Q^   •  L°2 = nCx)^, 

(C.l^a) 

(C.l^b) 

(ClUc) 

(ClUd) 

whence Eq.   (C.l^b) yields 

Ä2 = " ciii - n(xUe^~   * &2 • (CI5) 

The inverse matrix on the right exists by virtue of the fact that the 

eigenvalues of L.... are distinct from n(x) . Similarly, Eq. (C.lUc) has 

solution 
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<ki -Sa • "& " n«&rl • (C-16) 

In view of the character of L^2, it is also evident that ^ 

disappears from Eq. (C.lUd) and, thus, does not appear in Eq. (C.lU) at all. 

Hence, we can simply write 

&2 = ° 

^22=&2-^+2- 
(C-17) 

Finally, Eq. (Clta) becomes in component notation (i.e., dropping 

subscripts from Q-, and jL., but inserting subscripts for the four 

individual elements), 

(C.l8a) 

(C.lob) 

*21 + V*22 " V*LL " - h      • (C*18C) 

Combining Eq. (C.l8b) and (C.l8c), we readily obtain 

(C19) 

xi " xoH]^ " ^1 

S.1" q22 = B12  ' 

Adding Eq. (C.l8a) and (C.l8d), we get 

% - * CKu + W. (c-20) 

which serves to determine gQ. The proof is completed by choosing 
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0,2 = 1 

<fel = " lO + ± ^2 " V (C-21) 

Q11 = Hl2 

' Qg2 = 0  . 

To complete the inductive proof of Eq. (6.10), we assume its 

validity for k - 1, with k ^ 2, and examine the next transformation 

Vl) =-k * ?(k) 

d^k) 
-asr- = e4 * *(k) (c.22) 

--k„„ /„ i  _-k+l. 
" €"Xi'd3k/dx-' " G~^a"gi- I1 ' 

Employing the identity 

t-r        -k« \-l  n-   -k»    -2k J2   .    -k v-1 
tt+ e ^    =1- e Ä + €   &" QL+ e &>    > 

we have, from the properties of A, _, Eq. (6.10), 

<& - a,(k_1) + =-k+1^k-1) - & • & + io • & - «tj.0    <c-23> 

+ €"k {   }. 

We do not write out the terms in the bracket, but it is evident from 

Eq. (C.22) that this remainder has a power series expansion. The 

-k+1 
coefficient of e   , on the other hand, agrees with that for k = 1, 
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Eq. (C.12), except in the subscripts on the unknowns and the symbol for 

the "knowns" H and U£ " ', whence 

has a solution of precisely the same form as before. The proof is 

therefore complete. 
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APPENDIX D 

The proof of the asymptotic equivalence of the (transformed) 

given differential Eq. (6.11) and the (transformed) related Eq. (6.12), 

i.e.,-the proof of Eq. (6.U3), is briefly outlined here. It depends 

upon consideration of the integral equation for the solutions of Eq. 

(6.11), 

/x 1 

Y-1(s, e) • r(s, e) • ? (s, e)ds 
W vw 

r(x, e) = U(x, e) - J(x, e) (D.l) 
»»V V» M. 

where Y denotes the matrix of columns y., Eq. (6.U2), and where the 

lower limit of the integral on the right may depend upon the "matrix 

element" within the integral; i.e., if the integrand is written as a 

sum, the lower limit may vary from term to term. The validity of Eq. 

(D.l) is readily established by differentiation. 

. In order to establish Eq. (6.^3), it is conducive to clarity to 

consider the specific case 6 = i in Eq. (6.26), corresponding to a turning 

p 
point x* at which c r\  is a maximum. In fact, we will simply restrict 

our attention to profile M, Fig. 5, for which there are no other turning 

points on the x axis. By virtue of this specification, the "stretched" 

variable f,  Eq. (6.28) has argument it/2 for z > 0 and 5«/2 for z < 0. 

Turning to the asymptotic expressions Eq. (6.^0) and (6.Ul), we find that 

the behavior of these functions with increasing e (i.e., increasing |üO|) 

depends on the f^"^  terms rather than on the exponentials in ty. 
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To prove the desired asymptotic result, it is important that the 

set of n + 4 known solutions of the related equation, 

y.(i = 1, •••, n + 4), be "asymptotically distinguishable" for all x. 

This property is illustrated by the solutions y. and y_ if we assume 

that Re(k) < 0. From Eq. (6.40) and (6.41), it follows that y = y^0' 

-*(2) -4(2) 
xs recessive relative to y? = y^ '  for z > 0, while for z < 0, yv ' 

is recessive. By virtue of the fact that one is recessive while one is 

dominant for all z, these are said to be asymptotically distinguishable. 

For the case of Re(k) > 0, jr '  and y^ ' remain linearly independ- 

ent solutions. However, the leading part (for large e) of each is of the 

dominant type, as is seen from Eq. (6.4o) and (6.4l). Therefore, 

asymptotically they are not distinguishable and are not suitable in the 

proof of Eq. (6.43). In this instance, it can be demonstrated that the 

pair y^ 'and y^ ' given through Eq. (6.39) are distinguishable and should 

be used for y_ and y_ in the proof, i.e., in place of Eq. (6.42). 

For y and y2 in the case Re(k) = 0 and for the solutions of the 

(n + 2)-order related equation, y,, •••, y . , the concept of asymptotic 

distinguishability is not particularly importantJ for the various 

solutions do not become recessive or dominant for large e.  Instead, the 

leading parts of these solutions in the 6 -» °° limit remain linearly 

independent. 

In view of the distinguishability of y and y„ as defined in 

Eq. (6.42) for Re(k) < 0, we will restrict our attention to this case in 

the remainder of this Appendix. The Re(k) > 0 case is equivalent, once 
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y and y„ have been redefined in the manner indicated above« 

The proof is based upon an adaptation of the theorem used by 

9 Langer:  Given the integral equation 

'X /x ^ 
K(x, B, e) • f(s, e) ds (D.2a) 

with the order relations 

g(x, e) = h(x, e)0(l) 

f$*>*>*) A*-0^ e -» °° 

then 

f(x, e) = g(x, e) + h(x, e)0(e" ). 

(D.2b) 

(D.2c) 

The norm to be used for the arrays is the maximum absolute value of the 

elements. The proof of the theorem is essentially given by Langer. 

To begin with, then, we require the kernel of our integral 

equation in somewhat greater detail. In particular, the inverse of Y is 

required. From Eq. (6.17), (6,2k),   (6.39), an<^  (6«142) we obtain 

r1 
1 

FTTJ- 

-1 / 
6 U2  " U2 

-1 /    u^ 
e    u0    0_ 

£j (x, e) exp / - en(x')dx' 

(D.3) 

where F is the determinant of the upper 2-by-2 part of Y and hence is e 

times the Wronskian of the solutions un and u? of Eq. (6.27). By virtue 

-1 
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of the absence of a first derivative term in the latter, F is independ- 

ent of x and is found, following McKelvey,  to be proportional to 

e'?. Since n(x), Eq. (6.7), is pure imaginary andC^is a polynomial 

in e"1, the (n + 2)-by-(n + 2) block of Y-1 is a bounded function of e. 

Since r(x, e), Eq. (D.l), has a power series expansion at l/e = 0, 

it is bounded in e and the behavior of each element of the kernel of 

the differential equation is known. 

One now can apply the theorem (D.2) on any finite x interval, 

say (0, 2x*), which includes the turning point. Since the behavior of 

the v., and yQ columns of Y depends critically on the value of x, we 
1 C. MM 

divide this interval into three subintervals (0, x_), (x_, x+), and 

(x , 2x*) by the condition 

|t[z(x±), ie] | = M (D.M 

with M some large positive number. Since f is linear in e and of order 

2 
(x - x*) near the turning point, the central subinterval, containing 

l. 

the point x*, has length of order e~2. 

By virtue of this decomposition, we can apply the z > 0 asymptotic 

formulas for y and yg, Eq. (6,kOa)  and (6.Ula), on the interval 

(x , 2x*), and the z < 0 formulas Eq. (6.40b) and (6.Ulb) on (0, x_). 

On the central subinterval, however, the asymptotic formulas no longer 

apply so that we return to the full expression for the uv(z, &)functions 

in Eq. (6.29). Since f is bounded, it follows from the power series 

Eq. (6.31) that the v (z, CD) functions in Eq. (6.2o,e) are also bounded. 
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In addition, it can be shown from this power series that, although the 

derivatives of the confluent hypergeometric functions are infinite at 

f =  0 (i.e., at the turning point), it is nonetheless true that vj 

and v"  are bounded throughout the subinterval (x_, x+). Thus uy and its 

derivative, which determine y and y2 through Eq. (6.39)» 
are also 

bounded. 

To prove admissibility of either 3^ or y2, we begin on the 

subinterval on which it is recessive, setting the lower integration limit, 

for all matrix elements, in Eq. (D.l) to the outer limit of the interval, 

i.e., either 0 or 2x*. For the sake of illustration, we will consider 

the admissibility of y , so that we begin on (x+, 2x*). We set the 

function h(x, e) of the theorem to TT~^}  so that, by Eq. (6.h0a),  the 

order relation for the inhomogeneous part in Eq. (D.2) holds. The 

required order relation for the kernel can then be established through 

—»    —> —*  —» 
the asymptotic expressions for y and yg and the boundedness of y^, y^, 

..., thereby proving admissibility on one subinterval. 

On the central interval, the function h(x, e) in the theorem 

becomes simply unity, and the integral is split into a contribution 

over the outer subinterval (x+, 2x*) and one from x+ to x. The first 

contribution involves only known functions, since ty on (x+, 2x*) was 

just found to be y in the last paragraph, and is grouped with the 

inhomogeneous part of Eq. (D.l) to form the inhomogeneous part g(x, e) 

of the theorem. The order relations are once more established using 

the boundedness of the y. within the (x_, x+) and the fact that the 
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1 

interval of integration is of order e"?. Thus 1^ is proved equal to 

y , to order e" , on (x_, 2x*). 

The final interval (0, x ) is considered by combining the integral 

from x to 2x* in Eq. (D.l) with y to form g(x, e) for Eq. (D.2). One 

shows that this part satisfies the first of Eq. (D.2b) for h = t      h 

and then turns to the inhomogeneous part, using again the known 

asymptotic expressions. The proof of admissibility is then complete. 
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